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Gradient flow formalism — formal structure

State space u € M C {R", functions, measures} with conservation laws
Velocity 7, M = {#]i=0 : 7(0) = u, v € C*((—¢,¢), M)}
Energy F : M — IR smooth
Force differential DF(u) : 7..M — R € T,; M covector
Metric Identify covector and vector KC(u) : T,; M — T, M linear, definite
Gradient flow Orur = —K(ur) DF (ue). (#)

Variational characterization [De Giorgi ’80]
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Gradient flow formalism — formal structure

State space u € M C {R", functions, measures} with conservation laws
Velocity 7o, M = {#]t=0 : 7(0) = u,y € C*((—¢,¢), M)}
Energy F: M — IR smooth
Force differential DF(u) : T.M — R € T, M covector
Metric Identify covector and vector K(u) : 7, M — T, M linear, definite
Gradient flow  Jyuy = —K(ue) DF (uy). (4

Variational characterization [De Giorgi ’80]

Acouple [0,T] 3 t — (u¢, ¥e) € M X T, M solves the continuity equation if

Vit € [O, T] o Owur = ’C(ut)’(l)t denoted by (u, l,b) € CEr.
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Gradient flow formalism — formal structure

State space u € M C {R", functions, measures} with conservation laws
Velocity 7o, M = {#]t=0 : 7(0) = u,y € C*((—¢,¢), M)}
Energy F: M — IR smooth
Force differential DF(u) : T.M — R € T, M covector
Metric Identify covector and vector K(u) : 7, M — T, M linear, definite
Gradient flow  Jyuy = —K(ue) DF (uy). (4

Variational characterization [De Giorgi ’80]

Acouple [0,T] 3 t — (u¢, ¥e) € M X T, M solves the continuity equation if
YVt € [O, T] : Owur = ’C(ut)’(/)t denoted by (u, ’(,b) € CEr.
Then, each (u, ) € CEr satisfies J(u) > 0 where
1 [T 1 [T
J(u) := F(UT)_-F(UO)+§ / (DF (us), K(ut)D}"(ut))dt—i—i / (e, K(ue)the)dt.
0 0

Moreover, 7 (u) = 0 if and only if u satisfies (4).
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Gradient flow formalism - technical ingredients

Definition: action Alu, ¥) = (¢, K(u)y)
dissipation  D(u) := (DF(u), K(u)DF (u)).

Remark: Gradient flow solutions dyus = —KC(u:) DF (u.) satisfy the

energy—dissipation identity  F(ur) + fi D(us) dt = F(uo
0
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Gradient flow formalism - technical ingredients

Definition: action Alu, ¥) = (¢, K(u)y)
dissipation  D(u) := (DF(u), K(u)DF (u)).

Remark: Gradient flow solutions dyus = —KC(u:) DF (u.) satisfy the
energy—dissipation identity F(ur) + fOT D(ur) dt = F(ug)

Technical ingredients:
B Strong upper gradient property: V(u,?) € CEr, 0 < s <t <T

F(ue) — Flus)| < / /Alar )/ Dlur) dr.
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Gradient flow formalism - technical ingredients

Definition: action Alu, ¥) = (¢, K(u)y)
dissipation  D(u) := (DF(u), K(u)DF (u)).

Remark: Gradient flow solutions dyus = —KC(u:) DF (u.) satisfy the
energy—dissipation identity Flur) + fOT D(ut) dt = F(uo)

Technical ingredients:
B Strong upper gradient property: V(u, ) € CE7r,0 < s <t <T

F(ue) — Flus)| < / /Alar )/ Dlur) dr.

B Compactness and lower semicontinuity of 7:
Let (u™,9") € CEr starting from uo such that 7 (u") < C' < oo, then there
exists a limit (u, ) € CEr such that
liminf 7 (u") > J(u).

n—oo

Sulfficient to prove lower semicontinuity for the energy, action and dissipation,
separately.
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Gradient flow formalism — limit

Limits of gradient flows [Sandier, Serfaty '04]

A sequence (M*, F<, K°) of gradient structures converges to a gradient structure
(M, F, K) provided that there exists II° : M® x T*M* — M x T*M such that for
all (u®,9°) € CE% with 7°(u®) < C, there exists a subsequence with

IT° (u®, ¢°) — (u,¥) € CEr satisfying the following lim inf-estimates

vt € 10,7 : liminf}'s(us) > F(u)

hmmf .A (ug,¥5) dt>/ A(ug, ) d

liminf/ ’DE(uf)dtZ/ D(uy) dt
e—0 0 0
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Gradient flow formalism — limit

Limits of gradient flows [Sandier, Serfaty '04]

A sequence (M*, F<, K°) of gradient structures converges to a gradient structure
(M, F, K) provided that there exists II° : M® x T*M* — M x T*M such that for
all (u®,9°) € CE% with 7°(u®) < C, there exists a subsequence with

IT° (u®, ¢°) — (u,¥) € CEr satisfying the following lim inf-estimates

vt € 10,7 : liminf}'s(us) > F(u)

hm 1nf .A (ug,5) dt > / A(ug, ) d
lim inf/ D (uf) dt > / D(uy) dt
e—0 0 0

Corollary (Convergence of solutions)

Suppose the sequence (M*, F¢, K¢) of gradient structures converges to (M, F, K)
and assume the initial data ug is well-prepared F°(ug) — F(uo), then the sequence
of gradient flow solutions converge to a gradient flow solution.
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Becker-Déring equation — derivation

Model [Becker—Ddoring '35] for coagulation and fragmentation of clusters consisting of
identical monomers

X1+ X1 ==X, [=23...

by

under the assumption of conservation of the total mass density

o(t) =Y lnu(t) = > Inu(0) = go.
=1 =1
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Becker-Déring equation — derivation

Model [Becker—Ddoring '35] for coagulation and fragmentation of clusters consisting of

identical monomers

X4 X =X, 1=23,...

by

under the assumption of conservation of the total mass density
o(t) =Y lnu(t) = > Inu(0) = go.
=1 =1

Let J; be the net-flux from [ — 1 to I-clusters

a(t) = Jioa(t) — () 1=2,3....
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Becker-Déring equation — derivation

Model [Becker—Ddoring '35] for coagulation and fragmentation of clusters consisting of

identical monomers

X4 X =X, 1=23,...

by

under the assumption of conservation of the total mass density
o(t) =Y lnu(t) = > Inu(0) = go.
=1 =1

Let J; be the net-flux from [ — 1 to I-clusters
ni(t) = Ji—1(t) — Ji(t) [=2,3....

Mass conversation implies

fn(t) = =D Jit) = Ji(t) =t Jo(t) — Ji(t).
=1
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Becker-Déring equation — derivation

Model [Becker—Ddoring '35] for coagulation and fragmentation of clusters consisting of

identical monomers

X4 X =X, 1=23,...

by

under the assumption of conservation of the total mass density

o(t) =Y lnu(t) = > Inu(0) = go.
=1 =1
Let J; be the net-flux from | — 1 to [-clusters
ni(t) = Ji—1(t) — Ji(t) 1=2,3....
Mass conversation implies

fn(t) = =D Jit) = Ji(t) =t Jo(t) — Ji(t).
=1

The flux is determined from mass-action-kinetics

Jl(t) =amni (t)nl (t) — bl+1m+1(t), | = 1, 2, e
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Becker-Déring equation — stationary states and rates

Stationary states are characterized by the detailed balance condition

aj—1---ai

J =0 = aqwuw =btiwir = wl(z) = ZlQl with Q; := b b
- b
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Becker-Déring equation — stationary states and rates

Stationary states are characterized by the detailed balance condition

J=0 = aww =btiwi+1 = wi(z)= ZlQl with Q; := %
L bo

Has w(z) finite mass?

Assumption: Series z — > 7> | lwi(z) has finite radius of convergence zs < oo with
finite value ps ==Y ;2 lwi(zs) < oo.

Concrete physical relevant rates: Defined for o« € [0,1), v € (0,1) and zs, ¢ > 0 by

ar:=1% and b :=1"(zs +ql7").
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Becker-Déring equation — stationary states and rates

Stationary states are characterized by the detailed balance condition

J=0 = aww =btiwi+1 = wi(z)= ZlQl with Q; := %
L bo

Has w(z) finite mass?

Assumption: Series z — > 7> | lwi(z) has finite radius of convergence zs < oo with
finite value ps ==Y ;2 lwi(zs) < oo.

Concrete physical relevant rates: Defined for o« € [0,1), v € (0,1) and zs, ¢ > 0 by

ar:=1% and b :=1"(zs +ql7").

Then
wi(z) ~exp| llog 2) -4 I>1.
Zs 1—7
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Becker-Déring equation — stationary states and rates

Stationary states are characterized by the detailed balance condition

J=0 = aww =btiwi+1 = wi(z)= ZlQl with Q; := %
L bo

Has w(z) finite mass?

Assumption: Series z — > 7> | lwi(z) has finite radius of convergence zs < oo with
finite value ps ==Y ;2 lwi(zs) < oo.

Concrete physical relevant rates: Defined for o« € [0,1), v € (0,1) and zs, ¢ > 0 by

ar:=1% and b :=1"(zs +ql7").

wi(z) ~ exp(l log(zi) - ﬁlkV) I>1

Define z(go) such that > lw;(z) = po for po < ps and set z(0o) = zs for po > s.

Then
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Becker-Déring equation — stationary states and rates

Stationary states are characterized by the detailed balance condition

J=0 = aww =btiwi+1 = wi(z)= ZlQl with Q; := %
L bo

Has w(z) finite mass?

Assumption: Series z — > 7> | lwi(z) has finite radius of convergence zs < oo with
finite value ps ==Y ;2 lwi(zs) < oo.

Concrete physical relevant rates: Defined for o« € [0,1), v € (0,1) and zs, ¢ > 0 by

a; = 1" and by i =1" (zs + qliﬂ’).
Then
wi(z) ~exp| llog 2) -4 I>1.
Zs 1—7
Define z(go) such that > lw;(z) = po for po < ps and set z(0o) = zs for po > s.
State space: M = M(go) := {n € RY : 3°7° Iny = 00}
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Becker-Déring equation — free energy and long-time behavior

Consider free energy

F(n) == H(n|w(z Zwm( ) with  n(z) =zlogz —z + 1.

Long-time behavior [Ball, Carr, Penrose ’89]

B For z = z(o0) as before holds F(n) — 0 as t — oo.
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Consider free energy

F(n) == H(n|w(z Zwm( ) with  n(z) =zlogz —z + 1.

Long-time behavior [Ball, Carr, Penrose ’89]

B For z = z(0o) as before holds F(n) — 0 as t — co.

B Inthe case go > o5 holds n(t) = w(zs)in L' ast — oo.
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Becker-Déring equation — free energy and long-time behavior

Consider free energy

F(n) == H(n|w(z Zwm( ) with  n(z) =zlogz —z + 1.

Long-time behavior [Ball, Carr, Penrose ’89]

B For z = z(0o) as before holds F(n) — 0 as t — co.
B Inthe case go > o5 holds n(t) = w(zs)in L' ast — oo.
B In particular for oo > o5 the infimum

o P = FlelE)

is not attained.
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Becker-Déring equation — free energy and long-time behavior

Consider free energy

F(n) == H(n|w(z Zwm( ) with  n(z) =zlogz —z + 1.

Long-time behavior [Ball, Carr, Penrose ’89]

B For z = z(o0) as before holds F(n) — 0 as t — oo.
® In the case go > g, holds n(t) = w(zs) in L' as t — co.
B In particular for oo > o5 the infimum
inf F(n) = F(w(zs
o P = FlelE)

is not attained.

In which way does the excess mass po — ps vanish?
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Becker-Déring — Gradient flow formulation

Interpret as chemical reaction X; + X; a:l X;+1 and formalism by [Mielke "11].
byt1
Stéchiometric coefficients o} := 8} + 8¢ and 8! := 5+
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Becker-Déring — Gradient flow formulation

Interpret as chemical reaction X; + X; a:l X;+1 and formalism by [Mielke "11].
byt1
Stéchiometric coefficients o := 8; + 6! and B! := 6/ 1.

. . . . DBC
Rewrite evolution with stationary rate k! := aqjwiw; = biyiwis1

=S o) e 0)(o ) =S (2 2 (o)

=1
=J,

Differential of the free energy: DF(n) = (log Z—i)m .
=1
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Becker-Déring — Gradient flow formulation

Interpret as chemical reaction X; + X; a:l X;+1 and formalism by [Mielke "11].
by

Stéchiometric coefficients o := 8; + 6! and B! := 6/ 1.
Rewrite evolution with stationary rate k! := ajwiw; pEe bi+1wit1

=3 (@m () - b ) (- #) = zk<_">(az_51).

=1
=J;

Differential of the free energy: DF(n) = (log Z—i)m .
=1
Metric defined by Onsager matrix

o] ol BL
L l n n l 1 l 1 . L a—b
=1

Then n = —K(n)DF(n) follows from
l

ne pf n® nf'
A< )Df( ) (@ =)=~ — =
we' T wh w

we!
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Becker-Déring — formal expansion [Penrose ’97]

Assumption: pg > ps and w = w(zs).
Consider large clusters with cut-off Iy ~ ¢~ for some = € (0,1/2) and € > 0.
Define empirical macroscopic cluster distribution

V() = (Maen) (dX) = 551(,\)% = / AN = .

1>l 1>l
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Becker-Déring — formal expansion [Penrose ’97]

Assumption: pg > ps and w = w(zs).
Consider large clusters with cut-off Iy ~ ¢~ for some = € (0,1/2) and € > 0.
Define empirical macroscopic cluster distribution
5 L € L n € _
VE(dN) = (I5acn) (dA) =€ » bV = /,\ VAN =) ing.

1>l 1>l

Expansion of free energy ¢(z) = zlogz —z + 1

Fn) > ;W(ﬁg) =0 / AT U (AN (1 o(1)).
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Becker-Déring — formal expansion [Penrose ’97]

Assumption: pg > ps and w = w(zs).
Consider large clusters with cut-off Iy ~ ¢~ for some = € (0,1/2) and € > 0.
Define empirical macroscopic cluster distribution

V() = (Maen) (dX) = 551(,\)% = / AN = .
1>l 1>l
Expansion of free energy ¢(z) = zlogz —z + 1
_ q 1— €

z>z0

Rescaled microscopic energy fE( ) :=e " F(n).
Macroscopic energy E(v) f)\l_" v(d\).
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Becker-Déring — formal expansion [Penrose ’97]

Assumption: pg > ps and w = w(zs).
Consider large clusters with cut-off [ ~ e~ for some z € (0,1/2) and ¢ > 0.
Define empirical macroscopic cluster distribution

5 L € L n € _
VE(dN) = (I5acn) (dA) =€ » bV = / AN =D .
1>l 1>l
Expansion of free energy ¢(z) = zlogz —z + 1

) > wa(w) = ﬁ/ﬂﬂ VE(dN) (1 + o(1)).

1>1g

Rescaled microscopic energy fE( ) :=e " F(n).
Macroscopic energy E(v) f)\l Y v(dA).
Formal expansion of Onsager matrlx for I > lp with A = ¢l
fA+e) —fN)

(K(n)y), ~ —5170‘+78§(zs)\°‘ w®v®) with 95f(\) := e

where w®(el) = I5act) := e 77 (Y1 + ¢ — ¢r41) leads to time-scale e' 7.
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Becker-Déring — rescaled gradient structure

Onsager matrix K°(n)w® := =t7=K(n)y with w®(el) = 7 (Y1 + ¥ — Pi11).
Action A®(n,w®) := m=azz (¥, K(n)¥)
Dissipation D°(n) := =5 A(n, —DF(n)).
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Becker-Déring — rescaled gradient structure

Onsager matrix K°(n)w® := =t7=K(n)y with w®(el) = 7 (Y1 + ¥ — Pi11).
Action A®(n,w®) := m=azz (¥, K(n)¥)
Dissipation D°(n) := =5 A(n, —DF(n)).

Curves of finite action and variational characterization

A weak solution [0, 7] 3 t — (n°(t), w(t)) to the rescaled continuity equation
n®(t) = K° (n°(t)w®(t)), denoted by (n°, w*®) € CEZ, is called a rescaled curve of
finite action if

T
sup F°(n;) < oo, /.A‘E “(t),w"(t))dt < co and /Dg(ns(t))dt<oo.
0

te[0,T]

Moreover, for such a curve the functional
1 T 1 T
J(nf) = ]-‘e(ns(T))—J-'e(ng(O))—ki/ Ds(ns(t))dt+§/ A% (nf(t), w(t)) dt.
0 0

is non-negative with 7 (n°) = 0 if and only if n° is a solution to the rescaled
Becker—Déring equation.
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LSW equation — formal gradient structure

The [Lifshitz—Slyozov, Wagner '61] (LSW) equation models the coarsening of large
clusters and solves the nonlocal conservation law
g X" vy(d))

O+ O (A () =g\ TJme) =0 with ulan) = ZTre
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LSW equation — formal gradient structure

The [Lifshitz—Slyozov, Wagner '61] (LSW) equation models the coarsening of large
clusters and solves the nonlocal conservation law
g X" vy(d))

O+ O (A () =g\ TJme) =0 with ulan) = ZTre

Formal gradient structure [Niethammer '04]
State space M := {v € C2(R4)* |f>\1/ (d\) = po — ps =: p}
Tangent space T, M = {s € CZ(R4)" | [ As(d)\) = 0}.
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LSW equation — formal gradient structure

The [Lifshitz—Slyozov, Wagner '61] (LSW) equation models the coarsening of large
clusters and solves the nonlocal conservation law
g X" vy(d))

O+ O (A () =g\ TJme) =0 with ulan) = ZTre

Formal gradient structure [Niethammer '04]

State space M := {v € C2(R4)* f)ux (d\) = po — ps =: p}
Tangent space T, M = {s € CZ(R4)" | [ As(d)\) = 0}.
Onsager operator (compare formal expansion) and action

K@W)w := —-d\(A*wv) and Ay, w) = (w, Kw) := /)\o‘|w|2 dv.

Cotangent space Ty M := {w | [ A®wv(dX) = 0}.
Energy B(v) = 12 [ A7 v(dN),

André ichting e Variational ion and limits of gradient structures e October 06, 2016 e Page 10 (15) universita’tm iam |



LSW equation — formal gradient structure

The [Lifshitz—Slyozov, Wagner '61] (LSW) equation models the coarsening of large
clusters and solves the nonlocal conservation law

qf)\a_"’ ve(dN)

O+ O (A () =g\ TJme) =0 with ulan) = ZTre

Formal gradient structure [Niethammer '04]

State space M := {v € C2(R4)* f)ux (d\) = po — ps =: p}
Tangent space T, M = {s € C2(R4)" | [ As(d)) = 0}.
Onsager operator (compare formal expansion) and action

K@W)w := —-d\(A*wv) and Ay, w) = (w, Kw) := /)\o‘|w|2 dv.

Cotangent space Ty M := {w | [ A®wv(dX) = 0}.
Energy E(v) = i J A" w(dN), in general DE(v) ¢ T,;M! For s € T, M holds

DE(v)-s= 1% /)\1_”5 dr=— /()\u — AT )sdA = - /Aa (u—gA™")w dv.

where u = u(v) is chosen such that A — u — gA\™" € T; M.
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LSW equation — dissipation

Proposition (Dissipation is strong upper gradient of the energy)

Assume « > 1 — 3. Let (v, w) € CEr be a curve of finite action in M such that

/ /,\"‘ ) — A" ") duy dt < o0
uELQ([O T]

Then, it holds the moment estimate fOT JA%dr dt < oo.
Moreover, the minimization problem has a unique solution w € L?([0, T]) such that

A= u(t)—g\ " €T, M fora.e.t € [0, 7]
and the dissipation defined for a.e. ¢ € [0, 7] by

q [ A7 du

D) i= [ A(u(®) ~ X" dvs with u(t) = T Taedn

is a strong upper gradient for the energy E

|E(vt) — E(vs)| < /t VD) /AWr, wy) dr, VO<s<t<T.
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LSW equation — variational formulation

Proposition (Compactness)

Assume o > 1 — 3y and let (v",w™) € CEr for n € IN be a family of curves of
uniformly bounded action and dissipation such that {1}, oy is tight. Then, there
exists a subsequence and a couple (v, w) € CEr, such that

Vt € [0,T]: v >y and w'v" = w.
In addition, the action and dissipation satisfy the lim inf estimates

lim inf,,_ oo fOT A(wg,wi)dt > fOT A(ve, we) dt
liminf, oo i D) dt > [if D(vy)dt
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LSW equation — variational formulation

Proposition (Compactness)

Assume o > 1 — 3y and let (v",w™) € CEr for n € IN be a family of curves of
uniformly bounded action and dissipation such that {1}, oy is tight. Then, there
exists a subsequence and a couple (v, w) € CEr, such that

Vt € [0,T]: v >y and w'v" = w.
In addition, the action and dissipation satisfy the lim inf estimates
lim inf,,_ oo fOT A(wg,wi)dt > fOT l/t,wt)dt

lim inf,, o fOT (vi)dt > fo ) dt

Proposition (LSW as curves of maximal slope)

Let @ > 1 — 3. For (v, w) € CE7 with finite action holds
J(v) := E(vr) — E(w) + 3 fo (ve)dt + 5 fo (ve, wy) dt > 0.

Moreover, equality holds if and only if v+ is a weak solution to the LSW equation.
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Macroscopic Limit of the Becker-Déring gradient structure

Theorem (Convergence of curves of finite action)

Suppose that & > 1 — 3. Let (n°, w®) € CET be such that 7°(n°) < C and
vg = I5,..n° (0) is tight, then there exists a limiting curve ¢ — (v, w:) € CEr

Yt €[0,T]: vf =15 (t) 2 v and  wi(A)wf(dN) dt = we(N) deg(dN) dt.
There exists u € L?((0,T)) such that

ni() —2s r2 . g [ AT p(dN)
— u(-) with u(vy) = W

The energy, the action and the dissipation satisfy the following lim inf estimates

VEE0,T]:  lim Fne(vf) > ZlE(Vt),

e—0
7 1 (T
lim inf Aspac (Vi ,wi) dt > — A(ve, wy) dt,
e—0 0 Zs Jo
1 [T
hmmf/ Dinac(vi)dt > — D(vy) dt.

Zs Jo
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Macroscopic Limit of the Becker-Déring gradient structure

Corollary (Convergence of solutions) [cp. Niethammer ’03]

In addition, assume n°(0) to be well-prepared in the sense that

lim 7 (n°(0)) = E(w)

e—0

then there exists a limiting (v, w) € CEr such that lim inf. .o J°(n®) > J(v) > 0.
Especially, solutions converge: 7°(n) = 0= J(v) = 0.
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Macroscopic Limit of the Becker-Déring gradient structure

Corollary (Convergence of solutions) [cp. Niethammer ’03]

In addition, assume n°(0) to be well-prepared in the sense that

lim 7 (n°(0)) = E(w)

e—0

then there exists a limiting (v, w) € CEr such that lim inf. .o J°(n®) > J(v) > 0.
Especially, solutions converge: 7°(n) = 0= J(v) = 0.

Conjecture

The statement holds by assuming only macroscopic well-prepared initial data

lim E(IT5,0cn°(0)) = E(vo).
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Macroscopic Limit of the Becker-Déring gradient structure

Corollary (Convergence of solutions) [cp. Niethammer ’03]

In addition, assume n°(0) to be well-prepared in the sense that

lim 7 (n°(0)) = E(w)

e—0

then there exists a limiting (v, w) € CEr such that lim inf. .o J°(n®) > J(v) > 0.
Especially, solutions converge: 7°(n) = 0= J(v) = 0.

Conjecture

The statement holds by assuming only macroscopic well-prepared initial data

lim E(IT5,0cn°(0)) = E(vo).

Continuous dependence on the initial data of the LSW-equation

Let {15}, be a tight sequence of initial data such that lim._,o E(v5) = E(w0).
Then there exists a solution v € C°([0, 7] x R+ )* to the LSW equation such that
vi 2 uin CO(Ry) forall ¢t € 0,77
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Quasistationary distribution for the Becker-Déring equation

Theorem (Quasistationary distribution)

Let (n°,w®) € CEF be such that 7°(n°) < C and iIl;,,.n°(0) tight. Then, it holds

/ Hm]c |UJ( ( ))) de < CE’Y+(1 == a+’y)/ Dmlc nt)dt

where w;(z) = 2'Q; and Humic is the relative entropy defined by

Hmic(n | w(z Z ( )> with 7n(z) = zlogx —z + 1.

In particular, for a.e. ¢t € [0, T it holds

lim Fe(n () =0 and  lim Frae(n®(8)) = E().
E—r

e—0
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