Variational formulation and limits of evolution equations possesing a gradient structure

André Schlichting

Institute for Applied Mathematics, University of Bonn

January 10, 2017

State space $u \in \mathcal{M} \subseteq \{\mathbb{R}^n, \text{ functions, measures}\}$ with conservation laws

Velocity
$$\mathcal{T}_u \mathcal{M} = \{\dot{\gamma}|_{t=0} : \gamma(0) = u, \gamma \in C^1((-\varepsilon, \varepsilon), \mathcal{M})\}$$

Gradient flow
$$\partial_t u_t = -\mathcal{K}(u_t)D\mathcal{F}(u_t).$$
 (\spadesuit)

$$\forall t \in [0,T]: \quad \partial_t u_t = \mathcal{K}(u_t) \psi_t \qquad \text{denoted by} \qquad (u,\psi) \in \mathrm{CE}_T$$

$$\mathcal{J}(u) := \mathcal{F}(u_T) - \mathcal{F}(u_0) + \frac{1}{2} \int_0^T \langle D\mathcal{F}(u_t), \mathcal{K}(u_t) D\mathcal{F}(u_t) \rangle dt + \frac{1}{2} \int_0^T \langle \psi_t, \mathcal{K}(u_t) \psi_t \rangle dt.$$

State space $u \in \mathcal{M} \subseteq \{\mathbb{R}^n, \text{functions}, \text{measures}\}$ with conservation laws

Velocity
$$\mathcal{T}_u \mathcal{M} = \{\dot{\gamma}|_{t=0} : \gamma(0) = u, \gamma \in C^1((-\varepsilon, \varepsilon), \mathcal{M})\}$$

Energy $\mathcal{F}:\mathcal{M} \to \mathbb{R}$ smooth

Force differential $D\mathcal{F}(u): \mathcal{T}_u\mathcal{M} \to \mathbb{R} \in \mathcal{T}_u^*\mathcal{M}$ covector

Metric Identify covector and vector $\mathcal{K}(u): \mathcal{T}_u^* \mathcal{M} \to \mathcal{T}_u \mathcal{M}$ linear, definite

Gradient flow
$$\partial_t u_t = -\mathcal{K}(u_t)D\mathcal{F}(u_t).$$
 (\spadesuit)

Variational characterization [De Giorgi '80]

A couple $[0,T]
i t\mapsto (u_t,\psi_t)\in \mathcal{M} imes \mathcal{T}^*_{u_t}\mathcal{M}$ solves the continuity equation if

$$\forall t \in [0,T]: \quad \partial_t u_t = \mathcal{K}(u_t)\psi_t \qquad \text{denoted by} \qquad (u,\psi) \in \mathrm{CE}_T$$

Then, each $(u,\psi)\in \mathrm{CE}_T$ satisfies $\mathcal{J}(u)\geq 0$ where

$$\mathcal{J}(u) := \mathcal{F}(u_T) - \mathcal{F}(u_0) + \frac{1}{2} \int_0^T \langle D\mathcal{F}(u_t), \mathcal{K}(u_t) D\mathcal{F}(u_t) \rangle dt + \frac{1}{2} \int_0^T \langle \psi_t, \mathcal{K}(u_t) \psi_t \rangle dt.$$

State space $u \in \mathcal{M} \subseteq \{\mathbb{R}^n, \text{functions}, \text{measures}\}$ with conservation laws

Velocity $\mathcal{T}_u \mathcal{M} = \{\dot{\gamma}|_{t=0} : \gamma(0) = u, \gamma \in C^1((-\varepsilon, \varepsilon), \mathcal{M})\}$

Energy $\mathcal{F}:\mathcal{M} \to \mathbb{R}$ smooth

Force differential $D\mathcal{F}(u): \mathcal{T}_u\mathcal{M} \to \mathbb{R} \in \mathcal{T}_u^*\mathcal{M}$ covector

Metric Identify covector and vector $\mathcal{K}(u): \mathcal{T}_u^*\mathcal{M} \to \mathcal{T}_u\mathcal{M}$ linear, definite

Gradient flow
$$\partial_t u_t = -\mathcal{K}(u_t)D\mathcal{F}(u_t).$$
 (\spadesuit)

Variational characterization [De Giorgi '80]

A couple $[0,T]
i t\mapsto (u_t,\psi_t)\in \mathcal{M} imes \mathcal{T}^*_{u_t}\mathcal{M}$ solves the continuity equation if

 $\forall t \in [0,T]: \quad \partial_t u_t = \mathcal{K}(u_t) \psi_t \qquad \text{denoted by} \qquad (u,\psi) \in \mathrm{CE}_T \,.$

Then, each $(u,\psi)\in \mathrm{CE}_T$ satisfies $\mathcal{J}(u)\geq 0$ where

$$\mathcal{J}(u) := \mathcal{F}(u_T) - \mathcal{F}(u_0) + \frac{1}{2} \int_0^T \langle D\mathcal{F}(u_t), \mathcal{K}(u_t) D\mathcal{F}(u_t) \rangle dt + \frac{1}{2} \int_0^T \langle \psi_t, \mathcal{K}(u_t) \psi_t \rangle dt.$$

State space $u \in \mathcal{M} \subseteq \{\mathbb{R}^n, \text{functions}, \text{measures}\}$ with conservation laws

Velocity $\mathcal{T}_u \mathcal{M} = \{\dot{\gamma}|_{t=0} : \gamma(0) = u, \gamma \in C^1((-\varepsilon, \varepsilon), \mathcal{M})\}$

Energy $\mathcal{F}:\mathcal{M}\to\mathbb{R}$ smooth

Force differential $D\mathcal{F}(u): \mathcal{T}_u\mathcal{M} \to \mathbb{R} \in \mathcal{T}_u^*\mathcal{M}$ covector

Metric Identify covector and vector $\mathcal{K}(u): \mathcal{T}_u^* \mathcal{M} \to \mathcal{T}_u \mathcal{M}$ linear, definite

Gradient flow
$$\partial_t u_t = -\mathcal{K}(u_t) D\mathcal{F}(u_t)$$
. (\spadesuit)

Variational characterization [De Giorgi '80]

A couple $[0,T]
i t\mapsto (u_t,\psi_t)\in \mathcal{M} imes \mathcal{T}^*_{u_t}\mathcal{M}$ solves the continuity equation if

 $\forall t \in [0,T]: \quad \partial_t u_t = \mathcal{K}(u_t) \psi_t \qquad \text{denoted by} \qquad (u,\psi) \in \mathrm{CE}_T \,.$

Then, each $(u, \psi) \in CE_T$ satisfies $\mathcal{J}(u) \geq 0$ where

$$\mathcal{J}(u) := \mathcal{F}(u_T) - \mathcal{F}(u_0) + \frac{1}{2} \int_0^T \langle D\mathcal{F}(u_t), \mathcal{K}(u_t) D\mathcal{F}(u_t) \rangle dt + \frac{1}{2} \int_0^T \langle \psi_t, \mathcal{K}(u_t) \psi_t \rangle dt.$$

State space $u \in \mathcal{M} \subseteq \{\mathbb{R}^n, \text{functions}, \text{measures}\}$ with conservation laws

Velocity $\mathcal{T}_u \mathcal{M} = \{\dot{\gamma}|_{t=0} : \gamma(0) = u, \gamma \in C^1((-\varepsilon, \varepsilon), \mathcal{M})\}$

Energy $\mathcal{F}:\mathcal{M}\to\mathbb{R}$ smooth

Force differential $D\mathcal{F}(u): \mathcal{T}_u\mathcal{M} \to \mathbb{R} \in \mathcal{T}_u^*\mathcal{M}$ covector

Metric Identify covector and vector $\mathcal{K}(u): \mathcal{T}_u^*\mathcal{M} \to \mathcal{T}_u\mathcal{M}$ linear, definite

Gradient flow
$$\partial_t u_t = -\mathcal{K}(u_t)D\mathcal{F}(u_t)$$
. (\spadesuit)

Variational characterization [De Giorgi '80]

A couple $[0,T]
i t\mapsto (u_t,\psi_t)\in \mathcal{M} imes \mathcal{T}^*_{u_t}\mathcal{M}$ solves the continuity equation if

 $\forall t \in [0,T]: \quad \partial_t u_t = \mathcal{K}(u_t) \psi_t \qquad \text{denoted by} \qquad (u,\psi) \in \mathrm{CE}_T \,.$

Then, each $(u,\psi)\in \mathrm{CE}_T$ satisfies $\mathcal{J}(u)\geq 0$ where

$$\mathcal{J}(u) := \mathcal{F}(u_T) - \mathcal{F}(u_0) + \frac{1}{2} \int_0^T \langle D\mathcal{F}(u_t), \mathcal{K}(u_t) D\mathcal{F}(u_t) \rangle dt + \frac{1}{2} \int_0^T \langle \psi_t, \mathcal{K}(u_t) \psi_t \rangle dt$$

State space $u \in \mathcal{M} \subseteq \{\mathbb{R}^n, \text{functions}, \text{measures}\}$ with conservation laws

Velocity $\mathcal{T}_u \mathcal{M} = \{\dot{\gamma}|_{t=0} : \gamma(0) = u, \gamma \in C^1((-\varepsilon, \varepsilon), \mathcal{M})\}$

Energy $\mathcal{F}:\mathcal{M}\to\mathbb{R}$ smooth

Force differential $D\mathcal{F}(u): \mathcal{T}_u\mathcal{M} \to \mathbb{R} \in \mathcal{T}_u^*\mathcal{M}$ covector

Metric Identify covector and vector $\mathcal{K}(u): \mathcal{T}_u^*\mathcal{M} \to \mathcal{T}_u\mathcal{M}$ linear, definite

Gradient flow
$$\partial_t u_t = -\mathcal{K}(u_t)D\mathcal{F}(u_t)$$
. (\blacklozenge)

Variational characterization [De Giorgi '80]

A couple $[0,T]
i t\mapsto (u_t,\psi_t)\in \mathcal{M} imes \mathcal{T}^*_{u_t}\mathcal{M}$ solves the continuity equation if

 $\forall t \in [0,T]: \quad \partial_t u_t = \mathcal{K}(u_t) \psi_t \qquad ext{denoted by} \qquad (u,\psi) \in \mathrm{CE}_T \,.$

Then, each $(u,\psi)\in \mathrm{CE}_T$ satisfies $\mathcal{J}(u)\geq 0$ where

$$\mathcal{J}(u) := \mathcal{F}(u_T) - \mathcal{F}(u_0) + \frac{1}{2} \int_0^T \langle D\mathcal{F}(u_t), \mathcal{K}(u_t) D\mathcal{F}(u_t) \rangle dt + \frac{1}{2} \int_0^T \langle \psi_t, \mathcal{K}(u_t) \psi_t \rangle dt.$$

State space $u \in \mathcal{M} \subseteq \{\mathbb{R}^n, \text{functions}, \text{measures}\}$ with conservation laws

Velocity
$$\mathcal{T}_u \mathcal{M} = \{\dot{\gamma}|_{t=0} : \gamma(0) = u, \gamma \in C^1((-\varepsilon, \varepsilon), \mathcal{M})\}$$

Energy $\mathcal{F}:\mathcal{M}\to\mathbb{R}$ smooth

Force differential $D\mathcal{F}(u): \mathcal{T}_u\mathcal{M} \to \mathbb{R} \in \mathcal{T}_u^*\mathcal{M}$ covector

Metric Identify covector and vector $\mathcal{K}(u): \mathcal{T}_u^*\mathcal{M} \to \mathcal{T}_u\mathcal{M}$ linear, definite

Gradient flow
$$\partial_t u_t = -\mathcal{K}(u_t) D \mathcal{F}(u_t).$$
 (\blacklozenge)

Variational characterization [De Giorgi '80]

A couple $[0,T] \ni t \mapsto (u_t,\psi_t) \in \mathcal{M} \times \mathcal{T}_{u_t}^* \mathcal{M}$ solves the continuity equation if

$$\forall t \in [0,T]: \quad \partial_t u_t = \mathcal{K}(u_t)\psi_t \quad \text{denoted by} \quad (u,\psi) \in \mathrm{CE}_T.$$

Then, each $(u, \psi) \in \mathrm{CE}_T$ satisfies $\mathcal{J}(u) \geq 0$ where

$$\mathcal{J}(u) := \mathcal{F}(u_T) - \mathcal{F}(u_0) + \frac{1}{2} \int_0^T \langle D\mathcal{F}(u_t), \mathcal{K}(u_t) D\mathcal{F}(u_t) \rangle dt + \frac{1}{2} \int_0^T \langle \psi_t, \mathcal{K}(u_t) \psi_t \rangle dt$$

State space $u \in \mathcal{M} \subseteq \{\mathbb{R}^n, \text{functions}, \text{measures}\}$ with conservation laws

Velocity
$$\mathcal{T}_u \mathcal{M} = \{\dot{\gamma}|_{t=0} : \gamma(0) = u, \gamma \in C^1((-\varepsilon, \varepsilon), \mathcal{M})\}$$

Energy $\mathcal{F}:\mathcal{M}\to\mathbb{R}$ smooth

Force differential $D\mathcal{F}(u): \mathcal{T}_u\mathcal{M} \to \mathbb{R} \in \mathcal{T}_u^*\mathcal{M}$ covector

Metric Identify covector and vector $\mathcal{K}(u): \mathcal{T}_u^*\mathcal{M} \to \mathcal{T}_u\mathcal{M}$ linear, definite

Gradient flow
$$\partial_t u_t = -\mathcal{K}(u_t)D\mathcal{F}(u_t)$$
. (\blacklozenge)

Variational characterization [De Giorgi '80]

A couple $[0,T] \ni t \mapsto (u_t,\psi_t) \in \mathcal{M} \times \mathcal{T}^*_{u_t} \mathcal{M}$ solves the continuity equation if

$$\forall t \in [0,T]: \quad \partial_t u_t = \mathcal{K}(u_t) \psi_t \qquad \text{denoted by} \qquad (u,\psi) \in \mathrm{CE}_T \,.$$

Then, each $(u, \psi) \in CE_T$ satisfies $\mathcal{J}(u) \geq 0$ where

$$\mathcal{J}(u) := \mathcal{F}(u_T) - \mathcal{F}(u_0) + \frac{1}{2} \int_0^T \langle D\mathcal{F}(u_t), \mathcal{K}(u_t) D\mathcal{F}(u_t) \rangle dt + \frac{1}{2} \int_0^T \langle \psi_t, \mathcal{K}(u_t) \psi_t \rangle dt.$$

Moreover, $\mathcal{J}(u) = 0$ if and only if u satisfies (\spadesuit).

Gradient flow formalism - technical ingredients

Definition: action $\mathcal{A}(u,\psi) := \langle \psi, \mathcal{K}(u)\psi \rangle$

dissipation $\mathcal{D}(u) := \langle D\mathcal{F}(u), \mathcal{K}(u)D\mathcal{F}(u) \rangle$.

Remark: Gradient flow solutions $\partial_t u_t = -\mathcal{K}(u_t)D\mathcal{F}(u_t)$ satisfy the

 $\mathcal{F}(u_T) + \int_0^T \mathcal{D}(u_t) dt = \mathcal{F}(u_0)$ energy-dissipation identity

$$|\mathcal{F}(u_t) - \mathcal{F}(u_s)| \le \int_s^t \sqrt{\mathcal{A}(u_t, \psi_\tau)} \sqrt{\mathcal{D}(u_\tau)} d\tau$$

$$\lim\inf \mathcal{J}(u^n) \ge \mathcal{J}(u).$$

Gradient flow formalism - technical ingredients

Definition: action $\mathcal{A}(u,\psi) := \langle \psi, \mathcal{K}(u)\psi \rangle$

 $dissipation \qquad \mathcal{D}(u) := \langle D\mathcal{F}(u), \mathcal{K}(u)D\mathcal{F}(u) \rangle.$

Remark: Gradient flow solutions $\partial_t u_t = -\mathcal{K}(u_t)D\mathcal{F}(u_t)$ satisfy the

energy–dissipation identity $\mathcal{F}(u_T) + \int_0^T \mathcal{D}(u_t) dt = \mathcal{F}(u_0)$

Technical ingredients:

■ Strong upper gradient property: $\forall (u, \psi) \in CE_T, 0 \leq s < t \leq T$

$$|\mathcal{F}(u_t) - \mathcal{F}(u_s)| \le \int_s^t \sqrt{\mathcal{A}(u_t, \psi_\tau)} \sqrt{\mathcal{D}(u_\tau)} d\tau.$$

Compactness and lower semicontinuity of \mathcal{J} : Let $(u^n, \psi^n) \in \mathrm{CE}_T$ starting from u_0 such that $\mathcal{J}(u^n) \leq C < \infty$, then there exists a limit $(u, \psi) \in \mathrm{CE}_T$ such that

$$\liminf_{n \to \infty} \mathcal{J}(u^n) \ge \mathcal{J}(u).$$

Sufficient to prove lower semicontinuity for the energy, action and dissipation, separately.

Gradient flow formalism - technical ingredients

Definition: action $\mathcal{A}(u,\psi) := \langle \psi, \mathcal{K}(u)\psi \rangle$

Remark: Gradient flow solutions $\partial_t u_t = -\mathcal{K}(u_t)D\mathcal{F}(u_t)$ satisfy the

energy–dissipation identity
$$\mathcal{F}(u_T) + \int_0^T \mathcal{D}(u_t) \, \mathrm{d}t = \mathcal{F}(u_0)$$

Technical ingredients:

■ Strong upper gradient property: $\forall (u, \psi) \in CE_T$, $0 \le s < t \le T$

$$|\mathcal{F}(u_t) - \mathcal{F}(u_s)| \le \int_s^t \sqrt{\mathcal{A}(u_t, \psi_\tau)} \sqrt{\mathcal{D}(u_\tau)} d\tau.$$

Compactness and lower semicontinuity of \mathcal{J} : Let $(u^n, \psi^n) \in \mathrm{CE}_T$ starting from u_0 such that $\mathcal{J}(u^n) \leq C < \infty$, then there exists a limit $(u, \psi) \in \mathrm{CE}_T$ such that

$$\liminf_{n\to\infty} \mathcal{J}(u^n) \ge \mathcal{J}(u).$$

Sufficient to prove lower semicontinuity for the energy, action and dissipation, separately.

Limits of gradient flows [Sandier, Serfaty '04]

A sequence $(\mathcal{M}^{\varepsilon}, \mathcal{F}^{\varepsilon}, \mathcal{K}^{\varepsilon})$ of gradient structures converges to a gradient structure $(\mathcal{M}, \mathcal{F}, \mathcal{K})$ provided that there exists $\Pi^{\varepsilon} : \mathcal{M}^{\varepsilon} \times \mathcal{T}^{*}\mathcal{M}^{\varepsilon} \to \mathcal{M} \times \mathcal{T}^{*}\mathcal{M}$ such that for all $(u^{\varepsilon}, \psi^{\varepsilon}) \in CE_T^{\varepsilon}$ with $\mathcal{J}^{\varepsilon}(u^{\varepsilon}) \leq C$, there exists a subsequence with $\Pi^{\varepsilon}(u^{\varepsilon},\psi^{\varepsilon}) \to (u,\psi) \in CE_T$ satisfying the following \liminf -estimates

$$\forall t \in [0, T] : \liminf_{\varepsilon \to 0} \mathcal{F}^{\varepsilon}(u^{\varepsilon}) \ge \mathcal{F}(u)$$

$$\liminf_{\varepsilon \to 0} \int_{0}^{T} \mathcal{A}^{\varepsilon}(u_{t}^{\varepsilon}, \psi_{t}^{\varepsilon}) dt \ge \int_{0}^{T} \mathcal{A}(u_{t}, \psi_{t}) dt$$

$$\liminf_{\varepsilon \to 0} \int_{0}^{T} \mathcal{D}^{\varepsilon}(u_{t}^{\varepsilon}) dt \ge \int_{0}^{T} \mathcal{D}(u_{t}) dt.$$

Limits of gradient flows [Sandier, Serfaty '04]

A sequence $(\mathcal{M}^{\varepsilon}, \mathcal{F}^{\varepsilon}, \mathcal{K}^{\varepsilon})$ of gradient structures converges to a gradient structure $(\mathcal{M}, \mathcal{F}, \mathcal{K})$ provided that there exists $\Pi^{\varepsilon} : \mathcal{M}^{\varepsilon} \times \mathcal{T}^{*}\mathcal{M}^{\varepsilon} \to \mathcal{M} \times \mathcal{T}^{*}\mathcal{M}$ such that for all $(u^{\varepsilon}, \psi^{\varepsilon}) \in \mathrm{CE}_T^{\varepsilon}$ with $\mathcal{J}^{\varepsilon}(u^{\varepsilon}) \leq C$, there exists a subsequence with $\Pi^{\varepsilon}(u^{\varepsilon},\psi^{\varepsilon}) \to (u,\psi) \in \mathrm{CE}_T$ satisfying the following \liminf -estimates

$$\forall t \in [0, T] : \liminf_{\varepsilon \to 0} \mathcal{F}^{\varepsilon}(u^{\varepsilon}) \ge \mathcal{F}(u)$$

$$\liminf_{\varepsilon \to 0} \int_{0}^{T} \mathcal{A}^{\varepsilon}(u_{t}^{\varepsilon}, \psi_{t}^{\varepsilon}) dt \ge \int_{0}^{T} \mathcal{A}(u_{t}, \psi_{t}) dt$$

$$\liminf_{\varepsilon \to 0} \int_{0}^{T} \mathcal{D}^{\varepsilon}(u_{t}^{\varepsilon}) dt \ge \int_{0}^{T} \mathcal{D}(u_{t}) dt.$$

Corollary (Convergence of solutions)

Suppose the sequence $(\mathcal{M}^{\varepsilon}, \mathcal{F}^{\varepsilon}, \mathcal{K}^{\varepsilon})$ of gradient structures converges to $(\mathcal{M}, \mathcal{F}, \mathcal{K})$ and assume the initial data u_0^{ε} is well-prepared $\mathcal{F}^{\varepsilon}(u_0^{\varepsilon}) \to \mathcal{F}(u_0)$, then the sequence of gradient flow solutions converge to a gradient flow solution.

Model [Becker–Döring '35] for coagulation and fragmentation of clusters consisting of identical monomers

$$X_1 + X_{l-1} \xrightarrow{a_{l-1}} X_l, \qquad l = 2, 3, \dots$$

under the assumption of conservation of the total mass density

$$\varrho(t) := \sum_{l=1}^{\infty} l n_l(t) = \sum_{l=1}^{\infty} l n_l(0) = \varrho_0.$$

Let J_l be the net-flux from l-1 to l-clusters

$$\dot{n}_l(t) = J_{l-1}(t) - J_l(t)$$
 $l = 2, 3 \dots$

Mass conversation implies

$$\dot{n}_1(t) = -\sum_{l=1}^{\infty} J_l(t) - J_1(t) =: J_0(t) - J_1(t).$$

$$J_l(t) = a_l n_1(t) n_l(t) - b_{l+1} n_{l+1}(t), \qquad l = 1, 2, \dots$$

Model [Becker–Döring '35] for coagulation and fragmentation of clusters consisting of identical monomers

$$X_1 + X_{l-1} \xrightarrow{a_{l-1}} X_l, \qquad l = 2, 3, \dots$$

under the assumption of conservation of the total mass density

$$\varrho(t) := \sum_{l=1}^{\infty} l n_l(t) = \sum_{l=1}^{\infty} l n_l(0) = \varrho_0.$$

Let J_l be the net-flux from l-1 to l-clusters

$$\dot{n}_l(t) = J_{l-1}(t) - J_l(t)$$
 $l = 2, 3 \dots$

Mass conversation implies

$$\dot{n}_1(t) = -\sum_{l=1}^{\infty} J_l(t) - J_1(t) =: J_0(t) - J_1(t).$$

$$J_l(t) = a_l n_1(t) n_l(t) - b_{l+1} n_{l+1}(t), \qquad l = 1, 2, \dots$$

Model [Becker–Döring '35] for coagulation and fragmentation of clusters consisting of identical monomers

$$X_1 + X_{l-1} \xrightarrow{a_{l-1}} X_l, \qquad l = 2, 3, \dots$$

under the assumption of conservation of the total mass density

$$\varrho(t) := \sum_{l=1}^{\infty} l n_l(t) = \sum_{l=1}^{\infty} l n_l(0) = \varrho_0.$$

Let J_l be the net-flux from l-1 to l-clusters

$$\dot{n}_l(t) = J_{l-1}(t) - J_l(t) \qquad l = 2, 3 \dots$$

Mass conversation implies

$$\dot{n}_1(t) = -\sum_{l=1}^{\infty} J_l(t) - J_1(t) =: J_0(t) - J_1(t).$$

$$J_l(t) = a_l n_1(t) n_l(t) - b_{l+1} n_{l+1}(t), \qquad l = 1, 2, \dots$$

Model [Becker–Döring '35] for coagulation and fragmentation of clusters consisting of identical monomers

$$X_1 + X_{l-1} \xrightarrow{a_{l-1} \atop b_l} X_l, \qquad l = 2, 3, \dots$$

under the assumption of conservation of the total mass density

$$\varrho(t) := \sum_{l=1}^{\infty} l n_l(t) = \sum_{l=1}^{\infty} l n_l(0) = \varrho_0.$$

Let J_l be the net-flux from l-1 to l-clusters

$$\dot{n}_l(t) = J_{l-1}(t) - J_l(t)$$
 $l = 2, 3 \dots$

Mass conversation implies

$$\dot{n}_1(t) = -\sum_{l=1}^{\infty} J_l(t) - J_1(t) =: J_0(t) - J_1(t).$$

$$J_l(t) = a_l n_1(t) n_l(t) - b_{l+1} n_{l+1}(t), \qquad l = 1, 2, \dots$$

Stationary states are characterized by the detailed balance condition

$$J_l = 0 \quad \Rightarrow \quad a_l \omega_1 \omega_l = b_{l+1} \omega_{l+1} \quad \Rightarrow \quad \omega_l(z) = z^l Q_l \quad \text{with } Q_l := \frac{a_{l-1} \cdots a_1}{b_l \cdots b_2}.$$

Has $\omega(z)$ finite mass?

Assumption: Series $z \mapsto \sum_{l=1}^{\infty} l\omega_l(z)$ has finite radius of convergence $z_s < \infty$ with finite value $\rho_s := \sum_{l=1}^{\infty} l\omega_l(z_s) < \infty$.

Concrete physical relevant rates: Defined for $lpha \in [0,1), \, \gamma \in (0,1)$ and $z_s,q>0$ by

$$a_l := l^{lpha} \quad ext{ and } \quad b_l := l^{lpha} ig(z_s + q l^{-\gamma}ig).$$

Ther

$$\omega_l(z) \sim \exp\left(l\log\left(\frac{z}{z_s}\right) - \frac{q}{1-\gamma}l^{1-\gamma}\right) \qquad l \gg 1.$$

State space:
$$\mathcal{M} = \mathcal{M}(\varrho_0) := \{n \in \mathbb{R}_+^{\mathbb{N}} : \sum_{l=1}^{\infty} ln_l = \varrho_0\}$$

Stationary states are characterized by the detailed balance condition

$$J_l = 0 \quad \Rightarrow \quad a_l \omega_1 \omega_l = b_{l+1} \omega_{l+1} \quad \Rightarrow \quad \omega_l(z) = z^l Q_l \quad \text{ with } Q_l := \frac{a_{l-1} \cdots a_1}{b_l \cdots b_2}.$$

Has $\omega(z)$ finite mass?

Assumption: Series $z\mapsto \sum_{l=1}^\infty l\omega_l(z)$ has finite radius of convergence $z_s<\infty$ with finite value $\rho_s:=\sum_{l=1}^\infty l\omega_l(z_s)<\infty$.

Concrete physical relevant rates: Defined for $\alpha \in [0,1), \gamma \in (0,1)$ and $z_s,q>0$ by

$$a_l := l^{\alpha}$$
 and $b_l := l^{\alpha} (z_s + q l^{-\gamma}).$

Ther

$$\omega_l(z) \sim \exp\left(l\log\left(\frac{z}{z_s}\right) - \frac{q}{1-\gamma}l^{1-\gamma}\right) \qquad l \gg 1$$

State space:
$$\mathcal{M}=\mathcal{M}(\varrho_0):=\{n\in\mathbb{R}_+^\mathbb{N}:\sum_{l=1}^\infty ln_l=\varrho_0\}$$

Stationary states are characterized by the detailed balance condition

$$J_l = 0 \quad \Rightarrow \quad a_l \omega_1 \omega_l = b_{l+1} \omega_{l+1} \quad \Rightarrow \quad \omega_l(z) = z^l Q_l \quad \text{ with } Q_l := \frac{a_{l-1} \cdots a_1}{b_l \cdots b_2}.$$

Has $\omega(z)$ finite mass?

Assumption: Series $z\mapsto \sum_{l=1}^\infty l\omega_l(z)$ has finite radius of convergence $z_s<\infty$ with finite value $\rho_s:=\sum_{l=1}^\infty l\omega_l(z_s)<\infty$.

Concrete physical relevant rates: Defined for $\alpha \in [0,1), \gamma \in (0,1)$ and $z_s,q>0$ by

$$a_l := l^{\alpha}$$
 and $b_l := l^{\alpha} (z_s + q l^{-\gamma}).$

Then

$$\omega_l(z) \sim \exp\left(l\log\left(\frac{z}{z_s}\right) - \frac{q}{1-\gamma}l^{1-\gamma}\right) \qquad l \gg 1.$$

State space:
$$\mathcal{M} = \mathcal{M}(\varrho_0) := \{ n \in \mathbb{R}_+^{\mathbb{N}} : \sum_{l=1}^{\infty} l n_l = \varrho_0 \}$$

Stationary states are characterized by the detailed balance condition

$$J_l = 0 \quad \Rightarrow \quad a_l \omega_1 \omega_l = b_{l+1} \omega_{l+1} \quad \Rightarrow \quad \omega_l(z) = z^l Q_l \quad \text{ with } Q_l := \frac{a_{l-1} \cdots a_1}{b_l \cdots b_2}.$$

Has $\omega(z)$ finite mass?

Assumption: Series $z\mapsto \sum_{l=1}^\infty l\omega_l(z)$ has finite radius of convergence $z_s<\infty$ with finite value $\rho_s:=\sum_{l=1}^\infty l\omega_l(z_s)<\infty$.

Concrete physical relevant rates: Defined for $\alpha \in [0,1), \gamma \in (0,1)$ and $z_s,q>0$ by

$$a_l := l^{\alpha}$$
 and $b_l := l^{\alpha} (z_s + q l^{-\gamma}).$

Then

$$\omega_l(z) \sim \exp\left(l\log\left(\frac{z}{z_s}\right) - \frac{q}{1-\gamma}l^{1-\gamma}\right) \qquad l \gg 1.$$

State space:
$$\mathcal{M}=\mathcal{M}(\varrho_0):=\{n\in\mathbb{R}_+^\mathbb{N}:\sum_{l=1}^\infty ln_l=\varrho_0\}$$

Stationary states are characterized by the detailed balance condition

$$J_l = 0 \quad \Rightarrow \quad a_l \omega_1 \omega_l = b_{l+1} \omega_{l+1} \quad \Rightarrow \quad \omega_l(z) = z^l Q_l \quad \text{ with } Q_l := \frac{a_{l-1} \cdots a_1}{b_l \cdots b_2}.$$

Has $\omega(z)$ finite mass?

Assumption: Series $z\mapsto \sum_{l=1}^\infty l\omega_l(z)$ has finite radius of convergence $z_s<\infty$ with finite value $\rho_s:=\sum_{l=1}^\infty l\omega_l(z_s)<\infty$.

Concrete physical relevant rates: Defined for $\alpha \in [0,1), \gamma \in (0,1)$ and $z_s,q>0$ by

$$a_l := l^{\alpha}$$
 and $b_l := l^{\alpha} (z_s + q l^{-\gamma}).$

Then

$$\omega_l(z) \sim \exp\left(l\log\left(\frac{z}{z_s}\right) - \frac{q}{1-\gamma}l^{1-\gamma}\right) \qquad l \gg 1.$$

State space:
$$\mathcal{M} = \mathcal{M}(\varrho_0) := \{n \in \mathbb{R}_+^{\mathbb{N}} : \sum_{l=1}^{\infty} l n_l = \varrho_0\}$$

Becker-Döring equation - free energy and long-time behavior

Consider free energy

$$\mathcal{F}(n) := \mathcal{H}(n|\omega(z)) := \sum_{l=1}^{\infty} \omega_l \eta\left(\frac{n_l}{\omega_l}\right) \quad \text{with} \quad \eta(x) = x \log x - x + 1.$$

Long-time behavior [Ball, Carr, Penrose '89]

- For $z = z(\varrho_0)$ as before holds $\mathcal{F}(n) \to 0$ as $t \to \infty$.
- In the case $\varrho_0 > \varrho_s$ holds $n(t) \stackrel{*}{\rightharpoonup} \omega(z_s)$ in L^1 as $t \to \infty$.
- In particular for $\varrho_0 > \varrho_s$ the infimum

$$\inf_{n \in \mathcal{M}(\varrho_0)} \mathcal{F}(n) = \mathcal{F}(\omega(z_s))$$

is not attained.

In which way does the excess mass ho_0ho_s vanish?

Becker-Döring equation – free energy and long-time behavior

Consider free energy

$$\mathcal{F}(n) := \mathcal{H}(n|\omega(z)) := \sum_{l=1}^{\infty} \omega_l \eta\left(\frac{n_l}{\omega_l}\right) \qquad \text{with} \qquad \eta(x) = x \log x - x + 1.$$

Long-time behavior [Ball, Carr, Penrose '89]

- For $z = z(\rho_0)$ as before holds $\mathcal{F}(n) \to 0$ as $t \to \infty$.
- In the case $\rho_0 > \rho_s$ holds $n(t) \stackrel{*}{\rightharpoonup} \omega(z_s)$ in L^1 as $t \to \infty$.
- In particular for $\rho_0 > \rho_s$ the infimum

$$\inf_{n \in \mathcal{M}(\varrho_0)} \mathcal{F}(n) = \mathcal{F}(\omega(z_s))$$

Becker-Döring equation – free energy and long-time behavior

Consider free energy

$$\mathcal{F}(n) := \mathcal{H}(n|\omega(z)) := \sum_{l=1}^{\infty} \omega_l \eta\left(\frac{n_l}{\omega_l}\right) \quad \text{with} \quad \eta(x) = x \log x - x + 1.$$

Long-time behavior [Ball, Carr, Penrose '89]

- For $z=z(\varrho_0)$ as before holds $\mathcal{F}(n)\to 0$ as $t\to\infty$.
- In the case $\varrho_0 > \varrho_s$ holds $n(t) \stackrel{*}{\rightharpoonup} \omega(z_s)$ in L^1 as $t \to \infty$.
- In particular for $\varrho_0 > \varrho_s$ the infimum

$$\inf_{n \in \mathcal{M}(\varrho_0)} \mathcal{F}(n) = \mathcal{F}(\omega(z_s))$$

is not attained.

In which way does the excess mass $\rho_0 - \rho_s$ vanish?

Becker-Döring equation – free energy and long-time behavior

Consider free energy

$$\mathcal{F}(n) := \mathcal{H}(n|\omega(z)) := \sum_{l=1}^{\infty} \omega_l \eta\left(\frac{n_l}{\omega_l}\right) \quad \text{with} \quad \eta(x) = x \log x - x + 1.$$

Long-time behavior [Ball, Carr, Penrose '89]

- For $z = z(\rho_0)$ as before holds $\mathcal{F}(n) \to 0$ as $t \to \infty$.
- In the case $\varrho_0 > \varrho_s$ holds $n(t) \stackrel{*}{\rightharpoonup} \omega(z_s)$ in L^1 as $t \to \infty$.
- In particular for $\rho_0 > \rho_s$ the infimum

$$\inf_{n \in \mathcal{M}(\varrho_0)} \mathcal{F}(n) = \mathcal{F}(\omega(z_s))$$

is not attained.

In which way does the excess mass $\rho_0 - \rho_s$ vanish?

Becker-Döring – Gradient flow formulation

Interpret as chemical reaction $X_1 + X_l \stackrel{a_l}{\rightleftharpoons} X_{l+1}$ and formalism by [Mielke '11].

Stöchiometric coefficients $\alpha_i^l := \delta_i^1 + \delta_i^l$ and $\beta_i^l := \delta_i^{l+1}$.

$$\dot{n} = -\sum_{l=1}^{\infty} \underbrace{\left(a_l n_1(t) n_l(t) - b_{l+1} n_{l+1}(t)\right)}_{=J_l} \left(\alpha^l - \beta^l\right) = -\sum_{l=1}^{\infty} k^l \left(\frac{n^{\alpha^l}}{\omega^{\alpha^l}} - \frac{n^{\beta^l}}{\omega^{\beta^l}}\right) \left(\alpha^l - \beta^l\right)$$

$$\mathcal{K}(n) := \sum_{l=1}^{\infty} k^l \Lambda \left(\frac{n^{\alpha^l}}{\omega^{\alpha^l}}, \frac{n^{\beta^l}}{\omega^{\beta^l}} \right) \left(\alpha^l - \beta^l \right) \otimes \left(\alpha^l - \beta^l \right) \quad \text{with} \quad \Lambda(a,b) := \frac{a-b}{\log a - \log b}$$

$$\Lambda\bigg(\frac{n^{\alpha^l}}{\omega^{\alpha^l}},\frac{n^{\beta^l}}{\omega^{\beta^l}}\bigg)D\mathcal{F}(n)\cdot(\alpha^l-\beta^l)=\frac{n^{\alpha^l}}{\omega^{\alpha^l}}-\frac{n^{\beta^l}}{\omega^{\beta^l}}$$

Becker-Döring – Gradient flow formulation

Interpret as chemical reaction $X_1 + X_l \xrightarrow[h]{a_l} X_{l+1}$ and formalism by [Mielke '11].

Stöchiometric coefficients $\alpha_i^l:=\delta_i^1+\delta_i^l$ and $\beta_i^l:=\delta_i^{l+1}.$

Rewrite evolution with stationary rate $k^l:=a_l\omega_1\omega_l\stackrel{\mathrm{DBC}}{=}b_{l+1}\omega_{l+1}$

$$\dot{n} = -\sum_{l=1}^{\infty} \underbrace{\left(a_l n_1(t) n_l(t) - b_{l+1} n_{l+1}(t)\right)}_{=J_l} \left(\alpha^l - \beta^l\right) = -\sum_{l=1}^{\infty} k^l \left(\frac{n^{\alpha^l}}{\omega^{\alpha^l}} - \frac{n^{\beta^l}}{\omega^{\beta^l}}\right) \left(\alpha^l - \beta^l\right).$$

Differential of the free energy: $D\mathcal{F}(n) = \left(\log \frac{n_l}{\omega_l}\right)_{l=1}^{\infty}$.

Metric defined by Onsager matrix

$$\mathcal{K}(n) := \sum_{l=1}^{\infty} k^l \Lambda \bigg(\frac{n^{\alpha^l}}{\omega^{\alpha^l}}, \frac{n^{\beta^l}}{\omega^{\beta^l}} \bigg) \Big(\alpha^l - \beta^l \Big) \otimes \Big(\alpha^l - \beta^l \Big) \quad \text{with} \quad \Lambda(a,b) := \frac{a-b}{\log a - \log b}$$

Then $\dot{n} = -\mathcal{K}(n)D\mathcal{F}(n)$ follows from

$$\Lambda\bigg(\frac{n^{\alpha^l}}{\omega^{\alpha^l}},\frac{n^{\beta^l}}{\omega^{\beta^l}}\bigg)D\mathcal{F}(n)\cdot(\alpha^l-\beta^l)=\frac{n^{\alpha^l}}{\omega^{\alpha^l}}-\frac{n^{\beta^l}}{\omega^{\beta^l}}$$

Becker-Döring - Gradient flow formulation

Interpret as chemical reaction $X_1 + X_l \stackrel{a_l}{\rightleftharpoons} X_{l+1}$ and formalism by [Mielke '11].

Stöchiometric coefficients $\alpha_i^l:=\delta_i^1+\delta_i^l$ and $\beta_i^l:=\delta_i^{l+1}.$

Rewrite evolution with stationary rate $k^l:=a_l\omega_1\omega_l\stackrel{\mathrm{DBC}}{=}b_{l+1}\omega_{l+1}$

$$\dot{n} = -\sum_{l=1}^{\infty} \underbrace{\left(a_l n_1(t) n_l(t) - b_{l+1} n_{l+1}(t)\right)}_{=J_l} \left(\alpha^l - \beta^l\right) = -\sum_{l=1}^{\infty} k^l \left(\frac{n^{\alpha^l}}{\omega^{\alpha^l}} - \frac{n^{\beta^l}}{\omega^{\beta^l}}\right) \left(\alpha^l - \beta^l\right).$$

Differential of the free energy: $D\mathcal{F}(n) = \left(\log \frac{n_l}{\omega_l}\right)_{l=1}^{\infty}$. Metric defined by Onsager matrix

$$\mathcal{K}(n) := \sum_{l=1}^{\infty} k^l \Lambda \bigg(\frac{n^{\alpha^l}}{\omega^{\alpha^l}}, \frac{n^{\beta^l}}{\omega^{\beta^l}} \bigg) \Big(\alpha^l - \beta^l \Big) \otimes \Big(\alpha^l - \beta^l \Big) \quad \text{with} \quad \Lambda(a,b) := \frac{a-b}{\log a - \log b}.$$

Then $\dot{n} = -\mathcal{K}(n)D\mathcal{F}(n)$ follows from

$$\Lambda\bigg(\frac{n^{\alpha^l}}{\omega^{\alpha^l}},\frac{n^{\beta^l}}{\omega^{\beta^l}}\bigg)D\mathcal{F}(n)\cdot(\alpha^l-\beta^l)=\frac{n^{\alpha^l}}{\omega^{\alpha^l}}-\frac{n^{\beta^l}}{\omega^{\beta^l}}$$

Assumption: $\rho_0 > \rho_s$ and $\omega = \omega(z_s)$.

Consider large clusters with cut-off $l_0 \sim \varepsilon^{-x}$ for some $x \in (0, 1/2)$ and $\varepsilon > 0$. Define empirical macroscopic cluster distribution

$$\nu^{\varepsilon}(\mathrm{d}\lambda) := (\Pi_{\mathrm{mac}}^{\varepsilon} n)(\mathrm{d}\lambda) := \varepsilon \sum_{l \geq l_0} \delta_{\varepsilon l}(\lambda) \frac{n_l}{\varepsilon^2} \qquad \Rightarrow \qquad \int \lambda \ \nu^{\varepsilon}(\mathrm{d}\lambda) = \sum_{l \geq l_0} l n_l.$$

$$\mathcal{F}(n) \ge \sum_{l \ge l_0} \omega_l \, \psi\left(\frac{n_l}{\omega_l x}\right) = \varepsilon^{\gamma} \frac{q}{z_s(1-\gamma)} \int \lambda^{1-\gamma} \, \nu^{\varepsilon}(\mathrm{d}\lambda)(1+o(1)).$$

$$(\mathcal{K}(n)\psi)_l \approx -\varepsilon^{1-\alpha+\gamma} \partial_\lambda^\varepsilon (z_s \lambda^\alpha \, w^\varepsilon \, \nu^\varepsilon) \quad \text{with} \quad \partial_\lambda^\varepsilon f(\lambda) := \frac{f(\lambda+\varepsilon) - f(\lambda)}{\varepsilon},$$

Assumption: $\rho_0 > \rho_s$ and $\omega = \omega(z_s)$.

Consider large clusters with cut-off $l_0 \sim \varepsilon^{-x}$ for some $x \in (0, 1/2)$ and $\varepsilon > 0$. Define empirical macroscopic cluster distribution

$$\nu^{\varepsilon}(\mathrm{d}\lambda) := (\Pi_{\mathrm{mac}}^{\varepsilon} n)(\mathrm{d}\lambda) := \varepsilon \sum_{l > l_0} \delta_{\varepsilon l}(\lambda) \frac{n_l}{\varepsilon^2} \qquad \Rightarrow \qquad \int \lambda \ \nu^{\varepsilon}(\mathrm{d}\lambda) = \sum_{l > l_0} l n_l.$$

Expansion of free energy $\psi(x) = x \log x - x + 1$

$$\mathcal{F}(n) \ge \sum_{l \ge l_0} \omega_l \, \psi\left(\frac{n_l}{\omega_l x}\right) = \varepsilon^{\gamma} \frac{q}{z_s(1-\gamma)} \int \lambda^{1-\gamma} \, \nu^{\varepsilon}(\mathrm{d}\lambda)(1+o(1)).$$

Rescaled microscopic energy $\mathcal{F}^{\varepsilon}(n) := \varepsilon^{-\gamma} \mathcal{F}(n)$ Macroscopic energy $E(\nu) = \frac{q}{1-\gamma} \int \lambda^{1-\gamma} \ \nu(\mathrm{d}\lambda)$.

Formal expansion of Onsager matrix for $l \geq l_0$ with $\lambda = \varepsilon_0$

$$(\mathcal{K}(n)\psi)_l \approx -\varepsilon^{1-\alpha+\gamma} \partial_\lambda^\varepsilon (z_s \lambda^\alpha \, w^\varepsilon \, \nu^\varepsilon) \quad \text{with} \quad \partial_\lambda^\varepsilon f(\lambda) := \frac{f(\lambda+\varepsilon) - f(\lambda)}{\varepsilon}.$$

where $w^{\varepsilon}(\varepsilon l) = \prod_{\max}^{\varepsilon} \psi := \varepsilon^{-\gamma} (\psi_1 + \psi_l - \psi_{l+1})$ leads to time-scale $\varepsilon^{1-\alpha+\gamma}$.

Assumption: $\rho_0 > \rho_s$ and $\omega = \omega(z_s)$.

Consider large clusters with cut-off $l_0 \sim \varepsilon^{-x}$ for some $x \in (0, 1/2)$ and $\varepsilon > 0$.

Define empirical macroscopic cluster distribution

$$\nu^{\varepsilon}(\mathrm{d}\lambda) := (\Pi_{\mathrm{mac}}^{\varepsilon} n)(\mathrm{d}\lambda) := \varepsilon \sum_{l \geq l_0} \delta_{\varepsilon l}(\lambda) \frac{n_l}{\varepsilon^2} \qquad \Rightarrow \qquad \int \lambda \ \nu^{\varepsilon}(\mathrm{d}\lambda) = \sum_{l \geq l_0} l n_l.$$

Expansion of free energy $\psi(x) = x \log x - x + 1$

$$\mathcal{F}(n) \ge \sum_{l > l_0} \omega_l \, \psi\left(\frac{n_l}{\omega_l x}\right) = \varepsilon^{\gamma} \frac{q}{z_s(1-\gamma)} \int \lambda^{1-\gamma} \, \nu^{\varepsilon}(\mathrm{d}\lambda)(1+o(1)).$$

Rescaled microscopic energy $\mathcal{F}^{\varepsilon}(n) := \varepsilon^{-\gamma} \mathcal{F}(n)$.

Macroscopic energy $E(\nu) = \frac{q}{1-\gamma} \int \lambda^{1-\gamma} \nu(\mathrm{d}\lambda)$.

Formal expansion of Onsager matrix for $l \geq l_0$ with $\lambda = \varepsilon_0$

$$(\mathcal{K}(n)\psi)_l \approx -\varepsilon^{1-\alpha+\gamma} \partial_\lambda^\varepsilon(z_s \lambda^\alpha \, w^\varepsilon \, \nu^\varepsilon) \quad \text{with} \quad \partial_\lambda^\varepsilon f(\lambda) := \frac{f(\lambda+\varepsilon) - f(\lambda)}{\varepsilon}$$

where $w^{\varepsilon}(\varepsilon l) = \prod_{\max}^{\varepsilon} \psi := \varepsilon^{-\gamma} (\psi_1 + \psi_l - \psi_{l+1})$ leads to time-scale $\varepsilon^{1-\alpha+\gamma}$.

Assumption: $\rho_0 > \rho_s$ and $\omega = \omega(z_s)$.

Consider large clusters with cut-off $l_0\sim \varepsilon^{-x}$ for some $x\in (0,1/2)$ and $\varepsilon>0.$

Define empirical macroscopic cluster distribution

$$\nu^{\varepsilon}(\mathrm{d}\lambda) := (\Pi_{\mathrm{mac}}^{\varepsilon} n)(\mathrm{d}\lambda) := \varepsilon \sum_{l \geq l_0} \delta_{\varepsilon l}(\lambda) \frac{n_l}{\varepsilon^2} \qquad \Rightarrow \qquad \int \lambda \; \nu^{\varepsilon}(\mathrm{d}\lambda) = \sum_{l \geq l_0} l n_l.$$

Expansion of free energy $\psi(x) = x \log x - x + 1$

$$\mathcal{F}(n) \ge \sum_{l > l_0} \omega_l \, \psi\left(\frac{n_l}{\omega_l x}\right) = \varepsilon^{\gamma} \frac{q}{z_s(1-\gamma)} \int \lambda^{1-\gamma} \, \nu^{\varepsilon}(\mathrm{d}\lambda)(1+o(1)).$$

Rescaled microscopic energy $\mathcal{F}^{\varepsilon}(n) := \varepsilon^{-\gamma} \mathcal{F}(n)$.

Macroscopic energy $E(\nu) = \frac{q}{1-\gamma} \int \lambda^{1-\gamma} \nu(\mathrm{d}\lambda)$.

Formal expansion of Onsager matrix for $l \geq l_0$ with $\lambda = \varepsilon l$

$$(\mathcal{K}(n)\psi)_l \approx -\varepsilon^{1-\alpha+\gamma} \partial_\lambda^\varepsilon(z_s \lambda^\alpha \, w^\varepsilon \, \nu^\varepsilon) \quad \text{with} \quad \partial_\lambda^\varepsilon f(\lambda) := \frac{f(\lambda+\varepsilon) - f(\lambda)}{\varepsilon},$$

where $w^{\varepsilon}(\varepsilon l) = \prod_{\max}^{\varepsilon} \psi := \varepsilon^{-\gamma} (\psi_1 + \psi_l - \psi_{l+1})$ leads to time-scale $\varepsilon^{1-\alpha+\gamma}$.

Becker-Döring – rescaled gradient structure

Curves of finite action and variational characterization

A weak solution $[0,T] \ni t \mapsto (n^{\varepsilon}(t),w^{\varepsilon}(t))$ to the rescaled continuity equation $\dot{n}^{\varepsilon}(t) = \mathcal{K}^{\varepsilon} \left(n^{\varepsilon}(t) w^{\varepsilon}(t) \right)$, denoted by $(n^{\varepsilon},w^{\varepsilon}) \in \mathcal{CE}_{T}^{\varepsilon}$, is called a rescaled curve of finite action if

$$\sup_{t \in [0,T]} \mathcal{F}^{\varepsilon}(n_t^{\varepsilon}) < \infty, \quad \int_0^T \!\! \mathcal{A}^{\varepsilon}(n^{\varepsilon}(t), w^{\varepsilon}(t)) \, \mathrm{d}t < \infty \quad \text{and} \quad \int_0^T \!\! \mathcal{D}^{\varepsilon}(n^{\varepsilon}(t)) \, \mathrm{d}t < \infty$$

Moreover, for such a curve the functional

$$\mathcal{J}^\varepsilon(n^\varepsilon) := \mathcal{F}^\varepsilon(n^\varepsilon(T)) - \mathcal{F}^\varepsilon(n^\varepsilon(0)) + \frac{1}{2} \int_0^T \mathcal{D}^\varepsilon(n^\varepsilon(t)) \, \mathrm{d}t + \frac{1}{2} \int_0^T \mathcal{A}^\varepsilon(n^\varepsilon(t), w^\varepsilon(t)) \, \mathrm{d}t.$$

is non-negative with $\mathcal{J}^{\varepsilon}(n^{\varepsilon})=0$ if and only if n^{ε} is a solution to the rescaled Becker–Döring equation.

Becker-Döring – rescaled gradient structure

Curves of finite action and variational characterization

A weak solution $[0,T] \ni t \mapsto (n^{\varepsilon}(t), w^{\varepsilon}(t))$ to the rescaled continuity equation $\dot{n}^{\varepsilon}(t) = \mathcal{K}^{\varepsilon}(n^{\varepsilon}(t)w^{\varepsilon}(t))$, denoted by $(n^{\varepsilon}, w^{\varepsilon}) \in \mathcal{CE}_{T}^{\varepsilon}$, is called a rescaled curve of finite action if

$$\sup_{t \in [0,T]} \mathcal{F}^\varepsilon(n^\varepsilon_t) < \infty, \quad \int_0^T \!\! \mathcal{A}^\varepsilon(n^\varepsilon(t), w^\varepsilon(t)) \, \mathrm{d}t < \infty \quad \text{and} \quad \int_0^T \!\! \mathcal{D}^\varepsilon(n^\varepsilon(t)) \, \mathrm{d}t < \infty.$$

Moreover, for such a curve the functional

$$\mathcal{J}^{\varepsilon}(n^{\varepsilon}) := \mathcal{F}^{\varepsilon}(n^{\varepsilon}(T)) - \mathcal{F}^{\varepsilon}(n^{\varepsilon}(0)) + \frac{1}{2} \int_{0}^{T} \mathcal{D}^{\varepsilon}(n^{\varepsilon}(t)) dt + \frac{1}{2} \int_{0}^{T} \mathcal{A}^{\varepsilon}(n^{\varepsilon}(t), w^{\varepsilon}(t)) dt.$$

is non-negative with $\mathcal{J}^{\varepsilon}(n^{\varepsilon})=0$ if and only if n^{ε} is a solution to the rescaled Becker-Döring equation.

LSW equation – formal gradient structure

The [Lifshitz-Slyozov, Wagner '61] (LSW) equation models the coarsening of large clusters and solves the nonlocal conservation law

$$\partial_t \nu_t + \partial_\lambda \left(\lambda^\alpha \left(u(\nu_t) - q \lambda^{-\gamma} \right) \nu_t \right) = 0 \quad \text{with} \quad u(\nu_t) = \frac{q \int \lambda^{\alpha - \gamma} \nu_t(\mathrm{d}\lambda)}{\int \lambda^\alpha \nu_t(\mathrm{d}\lambda)}$$

State space
$$M:=\{
u\in C^0_c(\mathbb{R}_+)^*\mid \int \lambda\, \nu(\mathrm{d}\lambda)=
ho_0-
ho_s=:ar
ho\}$$

$$K(
u)w:=-\partial_\lambda(\lambda^\alpha w\,
u) \qquad ext{and} \qquad A(
u,w):=\langle w,Kw
angle:=\int \lambda^\alpha |w|^2\,\mathrm{d}
u.$$

$$DE(\nu) \cdot s = \frac{q}{1-\gamma} \int \lambda^{1-\gamma} s \, d\lambda = -\int \left(\lambda u - \frac{q}{1-\gamma} \lambda^{1-\gamma}\right) s \, d\lambda = -\int \lambda^{\alpha} \left(u - q\lambda^{-\gamma}\right) w \, d\nu$$

LSW equation - formal gradient structure

The [Lifshitz—Slyozov, Wagner '61] (LSW) equation models the coarsening of large clusters and solves the nonlocal conservation law

$$\partial_t \nu_t + \partial_\lambda \left(\lambda^\alpha \left(u(\nu_t) - q \lambda^{-\gamma} \right) \nu_t \right) = 0 \quad \text{with} \quad u(\nu_t) = \frac{q \int \lambda^{\alpha - \gamma} \nu_t(\mathrm{d}\lambda)}{\int \lambda^\alpha \nu_t(\mathrm{d}\lambda)}$$

Formal gradient structure [Niethammer '04]

State space
$$M:=\{\nu\in C_c^0(\mathbb{R}_+)^*\mid \int \lambda\,\nu(\mathrm{d}\lambda)=\rho_0-\rho_s=:\bar\rho\}$$

Tangent space $T_\nu M:=\{s\in C_c^0(\mathbb{R}_+)^*\mid \int \lambda\,s(\mathrm{d}\lambda)=0\}.$

Onsager operator (compare formal expansion) and action

$$K(
u)w:=-\partial_\lambda(\lambda^\alpha w\,
u) \qquad ext{and} \qquad A(
u,w):=\langle w,Kw
angle:=\int \lambda^\alpha |w|^2\,\mathrm{d}
u.$$

Cotangent space $T_{\nu}^*M := \{ w \mid \int \lambda^{\alpha} w \, \nu(\mathrm{d}\lambda) = 0 \}.$

Energy $E(\nu)=rac{q}{1-\gamma}\int\lambda^{1-\gamma}\,
u(\mathrm{d}\lambda)$, in general $DE(\nu)\notin T_{\nu}^{*}M!$ For $s\in T_{\nu}M$ holds

$$DE(\nu) \cdot s = \frac{q}{1-\gamma} \int \lambda^{1-\gamma} s \, d\lambda = -\int \left(\lambda u - \frac{q}{1-\gamma} \lambda^{1-\gamma}\right) s \, d\lambda = -\int \lambda^{\alpha} \left(u - q\lambda^{-\gamma}\right) w \, d\nu$$

where $u = u(\nu)$ is chosen such that $\lambda \mapsto u - q\lambda^{-\gamma} \in T_{\nu}^*M$.

LSW equation - formal gradient structure

The [Lifshitz–Slyozov, Wagner '61] (LSW) equation models the coarsening of large clusters and solves the nonlocal conservation law

$$\partial_t \nu_t + \partial_\lambda \left(\lambda^\alpha \left(u(\nu_t) - q \lambda^{-\gamma} \right) \nu_t \right) = 0 \quad \text{with} \quad u(\nu_t) = \frac{q \int \lambda^{\alpha - \gamma} \nu_t(\mathrm{d}\lambda)}{\int \lambda^\alpha \nu_t(\mathrm{d}\lambda)}$$

Formal gradient structure [Niethammer '04]

State space
$$M:=\{\nu\in C_c^0(\mathbb{R}_+)^*\mid \int \lambda\,\nu(\mathrm{d}\lambda)=\rho_0-\rho_s=:\bar\rho\}$$

Tangent space $T_{\nu}M := \{ s \in C_c^0(\mathbb{R}_+)^* \mid \int \lambda \, s(\mathrm{d}\lambda) = 0 \}.$

Onsager operator (compare formal expansion) and action

$$K(\nu)w:=-\partial_\lambda(\lambda^\alpha w\,\nu)\qquad\text{and}\qquad A(\nu,w):=\langle w,Kw\rangle:=\int \lambda^\alpha |w|^2\,\mathrm{d}\nu.$$

Cotangent space $T_{\nu}^*M:=\{w\mid \int \lambda^{\alpha}w\,\nu(\mathrm{d}\lambda)=0\}.$

Energy $E(\nu)=rac{q}{1-\gamma}\int\lambda^{1-\gamma}\,\nu(\mathrm{d}\lambda)$, in general $DE(\nu)\notin T_{\nu}^{*}M!$ For $s\in T_{\nu}M$ holds

$$DE(\nu) \cdot s = \frac{q}{1-\gamma} \int \lambda^{1-\gamma} s \, d\lambda = -\int \left(\lambda u - \frac{q}{1-\gamma} \lambda^{1-\gamma}\right) s \, d\lambda = -\int \lambda^{\alpha} \left(u - q \lambda^{-\gamma}\right) w \, d\nu$$

where $u = u(\nu)$ is chosen such that $\lambda \mapsto u - q\lambda^{-\gamma} \in T_{\nu}^*M$

LSW equation - formal gradient structure

The [Lifshitz–Slyozov, Wagner '61] (LSW) equation models the coarsening of large clusters and solves the nonlocal conservation law

$$\partial_t \nu_t + \partial_\lambda \left(\lambda^\alpha \left(u(\nu_t) - q \lambda^{-\gamma} \right) \nu_t \right) = 0 \qquad \text{with} \qquad u(\nu_t) = \frac{q \int \lambda^{\alpha - \gamma} \, \nu_t(\mathrm{d}\lambda)}{\int \lambda^\alpha \, \nu_t(\mathrm{d}\lambda)}$$

Formal gradient structure [Niethammer '04]

State space $M:=\{\nu\in C_c^0(\mathbb{R}_+)^*\mid \int \lambda\,\nu(\mathrm{d}\lambda)=\rho_0-\rho_s=:\bar\rho\}$

Tangent space $T_{\nu}M:=\{s\in C_{\nu}^{0}(\mathbb{R}_{+})^{*}\mid \int \lambda\,s(\mathrm{d}\lambda)=0\}.$

Onsager operator (compare formal expansion) and action

$$K(\nu)w:=-\partial_\lambda(\lambda^\alpha w\,\nu)\qquad\text{and}\qquad A(\nu,w):=\langle w,Kw\rangle:=\int \lambda^\alpha |w|^2\,\mathrm{d}\nu.$$

Cotangent space $T_{\nu}^*M:=\{w\mid \int \lambda^{\alpha}w\,\nu(\mathrm{d}\lambda)=0\}.$

Energy $E(\nu)=rac{q}{1-\gamma}\int\lambda^{1-\gamma}\,
u(\mathrm{d}\lambda)$, in general $DE(\nu)\notin T_{\nu}^{*}M!$ For $s\in T_{\nu}M$ holds

$$DE(\nu) \cdot s = \frac{q}{1-\gamma} \int \lambda^{1-\gamma} s \, d\lambda = -\int \left(\lambda u - \frac{q}{1-\gamma} \lambda^{1-\gamma}\right) s \, d\lambda = -\int \lambda^{\alpha} \left(u - q \lambda^{-\gamma}\right) w \, d\nu.$$

where $u = u(\nu)$ is chosen such that $\lambda \mapsto u - q\lambda^{-\gamma} \in T_{\nu}^*M$.

Proposition (Dissipation is strong upper gradient of the energy)

Assume $\alpha > 1 - 3\gamma$. Let $(\nu, w) \in \mathrm{CE}_T$ be a curve of finite action in M such that

$$\inf_{u \in L^2([0,T])} \int_0^T \int \lambda^{\alpha} (u(t) - q\lambda^{-\gamma})^2 d\nu_t dt < \infty.$$

Then, it holds the moment estimate $\int_0^T \int \lambda^{\alpha} d\nu_t dt < \infty$.

Moreover, the minimization problem has a unique solution $u \in L^2([0,T])$ such that

$$\lambda \mapsto u(t) - q \lambda^{-\gamma} \in T^*_{\nu_t} M \qquad \text{ for a.e. } t \in [0,T]$$

and the dissipation defined for a.e. $t \in [0, T]$ by

$$D(\nu_t) := \int \lambda^{\alpha} (u(t) - q\lambda^{-\gamma})^2 d\nu_t \quad \text{with} \quad u(t) := \frac{q \int \lambda^{\alpha - \gamma} d\nu_t}{\int \lambda^{\alpha} d\nu_t},$$

is a strong upper gradient for the energy E

$$|E(\nu_t) - E(\nu_s)| \le \int_s^t \sqrt{D(\nu_r)} \sqrt{A(\nu_r, w_r)} \, dr, \quad \forall 0 \le s < t \le T.$$

LSW equation – variational formulation

Proposition (Compactness)

Assume $\alpha > 1 - 3\gamma$ and let $(\nu^n, w^n) \in CE_T$ for $n \in \mathbb{N}$ be a family of curves of uniformly bounded action and dissipation such that $\{\nu_0^n\}_{n\in\mathbb{N}}$ is tight. Then, there exists a subsequence and a couple $(\nu, w) \in CE_T$, such that

$$\forall t \in [0,T]: \nu_t^n \overset{*}{\rightharpoonup} \nu_t \qquad \text{ and } \qquad w^n \nu^n \overset{*}{\rightharpoonup} w\nu.$$

In addition, the action and dissipation satisfy the lim inf estimates

$$\lim \inf_{n \to \infty} \int_0^T A(\nu_t^n, w_t^n) \, \mathrm{d}t \ge \int_0^T A(\nu_t, w_t) \, \mathrm{d}t$$
$$\lim \inf_{n \to \infty} \int_0^T D(\nu_t^n) \, \mathrm{d}t \ge \int_0^T D(\nu_t) \, \mathrm{d}t$$

$$J(\nu) := E(\nu_T) - E(\nu_0) + \frac{1}{2} \int_0^T D(\nu_t) dt + \frac{1}{2} \int_0^T A(\nu_t, w_t) dt \ge 0$$

LSW equation - variational formulation

Proposition (Compactness)

Assume $\alpha \geq 1-3\gamma$ and let $(\nu^n,w^n) \in \mathrm{CE}_T$ for $n \in \mathbb{N}$ be a family of curves of uniformly bounded action and dissipation such that $\{\nu_0^n\}_{n\in\mathbb{N}}$ is tight. Then, there exists a subsequence and a couple $(\nu,w) \in \mathrm{CE}_T$, such that

$$\forall t \in [0,T]: \nu_t^n \stackrel{*}{\rightharpoonup} \nu_t \qquad \text{and} \qquad w^n \nu^n \stackrel{*}{\rightharpoonup} w \nu.$$

In addition, the action and dissipation satisfy the \liminf estimates

$$\lim \inf_{n \to \infty} \int_0^T A(\nu_t^n, w_t^n) dt \ge \int_0^T A(\nu_t, w_t) dt$$
$$\lim \inf_{n \to \infty} \int_0^T D(\nu_t^n) dt \ge \int_0^T D(\nu_t) dt$$

Proposition (LSW as curves of maximal slope)

Let $\alpha \geq 1 - 3\gamma$. For $(\nu, w) \in CE_T$ with finite action holds

$$J(\nu) := E(\nu_T) - E(\nu_0) + \frac{1}{2} \int_0^T D(\nu_t) dt + \frac{1}{2} \int_0^T A(\nu_t, w_t) dt \ge 0.$$

Moreover, equality holds if and only if ν_t is a weak solution to the LSW equation.

Theorem (Convergence of curves of finite action)

Suppose that $\alpha \geq 1-3\gamma$. Let $(n^{\varepsilon},w^{\varepsilon}) \in \mathcal{CE}_T^{\varepsilon}$ be such that $\mathcal{J}^{\varepsilon}(n^{\varepsilon}) \leq C$ and $\nu_0^{\varepsilon} := \Pi_{\max}^{\varepsilon} n^{\varepsilon}(0)$ is tight, then there exists a limiting curve $t \mapsto (\nu_t,w_t) \in \mathrm{CE}_T$

$$\forall t \in [0,T]: \nu_t^\varepsilon := \Pi_{\mathrm{mac}}^\varepsilon n^\varepsilon(t) \overset{*}{\rightharpoonup} \nu_t \qquad \text{and} \qquad w_t^\varepsilon(\lambda) \nu_t^\varepsilon(\mathrm{d}\lambda) \, \mathrm{d}t \overset{*}{\rightharpoonup} w_t(\lambda) \, \mathrm{d}\nu_t(\mathrm{d}\lambda) \, \mathrm{d}t.$$

There exists $u \in L^2((0,T))$ such that

$$\frac{n_1(\cdot) - z_s}{\varepsilon^{\gamma}} \xrightarrow{L^2} u(\cdot) \qquad \text{with} \qquad u(\nu_t) := \frac{q \int \lambda^{\alpha - \gamma} \nu_t(\mathrm{d}\lambda)}{\int \lambda^{\alpha} \nu_t(\mathrm{d}\lambda)}.$$

The energy, the action and the dissipation satisfy the following \liminf estimates

$$\forall t \in [0, T]: \lim_{\varepsilon \to 0} \mathcal{F}_{\text{mac}}^{\varepsilon}(\nu_t^{\varepsilon}) \ge \frac{1}{z_s} E(\nu_t),$$

$$\liminf_{\varepsilon \to 0} \int_0^T \mathcal{A}_{\text{mac}}^{\varepsilon}(\nu_t^{\varepsilon}, w_t^{\varepsilon}) \, dt \ge \frac{1}{z_s} \int_0^T A(\nu_t, w_t) \, dt,$$

$$\liminf_{\varepsilon \to 0} \int_0^T \mathcal{D}_{\text{mac}}^{\varepsilon}(\nu_t^{\varepsilon}) \, dt \ge \frac{1}{z_s} \int_0^T D(\nu_t) \, dt.$$

Corollary (Convergence of solutions) [cp. Niethammer '03]

In addition, assume $n^{\varepsilon}(0)$ to be well-prepared in the sense that

$$\lim_{\varepsilon \to 0} \mathcal{F}^{\varepsilon}(n^{\varepsilon}(0)) = E(\nu_0)$$

then there exists a limiting $(\nu, w) \in \mathrm{CE}_T$ such that $\liminf_{\varepsilon \to 0} \mathcal{J}^{\varepsilon}(n^{\varepsilon}) \geq J(\nu) \geq 0$. Especially, solutions converge: $\mathcal{J}^{\varepsilon}(n^{\varepsilon}) = 0 \Rightarrow J(\nu) = 0$.

$$\lim_{\varepsilon \to 0} E(\Pi_{\text{mac}}^{\varepsilon} n^{\varepsilon}(0)) = E(\nu_0).$$

Corollary (Convergence of solutions) [cp. Niethammer '03]

In addition, assume $n^{\varepsilon}(0)$ to be well-prepared in the sense that

$$\lim_{\varepsilon \to 0} \mathcal{F}^{\varepsilon}(n^{\varepsilon}(0)) = E(\nu_0)$$

then there exists a limiting $(\nu, w) \in CE_T$ such that $\liminf_{\varepsilon \to 0} \mathcal{J}^{\varepsilon}(n^{\varepsilon}) \geq J(\nu) \geq 0$. Especially, solutions converge: $\mathcal{J}^{\varepsilon}(n^{\varepsilon}) = 0 \Rightarrow J(\nu) = 0$.

Conjecture

The statement holds by assuming only macroscopic well-prepared initial data

$$\lim_{\varepsilon \to 0} E(\Pi_{\text{mac}}^{\varepsilon} n^{\varepsilon}(0)) = E(\nu_0).$$

Corollary (Convergence of solutions) [cp. Niethammer '03]

In addition, assume $n^{\varepsilon}(0)$ to be well-prepared in the sense that

$$\lim_{\varepsilon \to 0} \mathcal{F}^{\varepsilon}(n^{\varepsilon}(0)) = E(\nu_0)$$

then there exists a limiting $(\nu, w) \in CE_T$ such that $\liminf_{\varepsilon \to 0} \mathcal{J}^{\varepsilon}(n^{\varepsilon}) \geq J(\nu) > 0$. Especially, solutions converge: $\mathcal{J}^{\varepsilon}(n^{\varepsilon}) = 0 \Rightarrow J(\nu) = 0$.

Conjecture

The statement holds by assuming only macroscopic well-prepared initial data

$$\lim_{\varepsilon \to 0} E(\Pi_{\text{mac}}^{\varepsilon} n^{\varepsilon}(0)) = E(\nu_0).$$

Continuous dependence on the initial data of the LSW-equation

Let $\{\nu_0^{\varepsilon}\}_{{\varepsilon}>0}$ be a tight sequence of initial data such that $\lim_{{\varepsilon}\to 0} E(\nu_0^{\varepsilon}) = E(\nu_0)$. Then there exists a solution $\nu \in C_c^\infty([0,T] \times \mathbb{R}_+)^*$ to the LSW equation such that $\nu_t^{\varepsilon} \stackrel{*}{\rightharpoonup} \nu_t$ in $C_c^0(\mathbb{R}_+)$ for all $t \in [0,T]$.

Quasistationary distribution for the Becker-Döring equation

Theorem (Quasistationary distribution)

Let $(n^{\varepsilon}, w^{\varepsilon}) \in \mathcal{CE}_T^{\varepsilon}$ be such that $\mathcal{J}^{\varepsilon}(n^{\varepsilon}) \leq C$ and $i\Pi_{\max}^{\varepsilon} n^{\varepsilon}(0)$ tight. Then, it holds

$$\int_0^T \mathcal{H}_{\mathrm{mic}} \left(n^{\varepsilon}(t) \mid \omega(n_1^{\varepsilon}(t)) \right) dt \leq C \varepsilon^{\gamma + (1-x)(1-\alpha+\gamma)} \int_0^T \mathcal{D}_{\mathrm{mic}}^{\varepsilon}(n_t^{\varepsilon}) dt,$$

where $\omega_l(z) = z^l Q_l$ and \mathcal{H}_{mic} is the relative entropy defined by

$$\mathcal{H}_{\mathrm{mic}}(n \mid \omega(z)) := \sum_{l=1}^{\iota_0 - 1} \omega_l(z) \eta\left(\frac{n_l}{\omega_l(z)}\right) \quad \text{with} \quad \eta(x) = x \log x - x + 1.$$

In particular, for a.e. $t \in [0, T]$ it holds

$$\lim_{\varepsilon \to 0} \mathcal{F}^{\varepsilon}_{\mathrm{mic}}(n^{\varepsilon}(t)) = 0 \qquad \text{and} \qquad \lim_{\varepsilon \to 0} \mathcal{F}^{\varepsilon}_{\mathrm{mac}}(n^{\varepsilon}(t)) = E(\nu_t).$$

Quasistationary distribution for the Becker-Döring equation

Theorem (Quasistationary distribution)

Let $(n^{\varepsilon}, w^{\varepsilon}) \in \mathcal{CE}_T^{\varepsilon}$ be such that $\mathcal{J}^{\varepsilon}(n^{\varepsilon}) \leq C$ and $i\Pi_{\max}^{\varepsilon} n^{\varepsilon}(0)$ tight. Then, it holds

$$\int_0^T \mathcal{H}_{\mathrm{mic}} \big(n^\varepsilon(t) \mid \omega(n_1^\varepsilon(t)) \big) \, \mathrm{d}t \leq C \varepsilon^{\gamma + (1-x)(1-\alpha + \gamma)} \int_0^T \mathcal{D}_{\mathrm{mic}}^\varepsilon(n_t^\varepsilon) \, \mathrm{d}t,$$

where $\omega_l(z) = z^l Q_l$ and \mathcal{H}_{mic} is the relative entropy defined by

$$\mathcal{H}_{\mathrm{mic}}(n \mid \omega(z)) := \sum_{l=1}^{l_0-1} \omega_l(z) \eta\left(\frac{n_l}{\omega_l(z)}\right) \quad \text{with} \quad \eta(x) = x \log x - x + 1.$$

In particular, for a.e. $t \in [0, T]$ it holds

$$\lim_{\varepsilon \to 0} \mathcal{F}^{\varepsilon}_{\mathrm{mic}}(n^{\varepsilon}(t)) = 0 \qquad \text{and} \qquad \lim_{\varepsilon \to 0} \mathcal{F}^{\varepsilon}_{\mathrm{mac}}(n^{\varepsilon}(t)) = E(\nu_t).$$

A. Schlichting, Macroscopic limit of the Becker-Döring equation via gradient flows. arXiv:1607.08735

Thank you for your attention!

