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Abstract

In molecular dynamics and sampling of high dimensional Gibbs measures coarse-graining is an
important technique to reduce the dimensionality of the problem. We will study and quantify the
coarse-graining error between the coarse-grained dynamics and an effective dynamics. The effective
dynamics is a Markov process on the coarse-grained state space obtained by a closure procedure from
the coarse-grained coe�cients. We obtain error estimates both in relative entropy and Wasserstein
distance, for both Langevin and overdamped Langevin dynamics. The approach allows for vectorial
coarse-graining maps. Hereby, the quality of the chosen coarse-graining is measured by certain
functional inequalities encoding the scale separation of the Gibbs measure. The method is based on
error estimates between solutions of (kinetic) Fokker-Planck equations in terms of large-deviation
rate functionals.

Contents
1 Introduction 2

1.1 The central question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overdamped Langevin dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Central ingredients of the proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Encoding scale-separation via functional inequalities . . . . . . . . . . . . . . . . . 7
1.4.2 Relative entropy results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 Wasserstein estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Novelties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Overdamped Langevin dynamics 9
2.1 Setup of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Functional inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Coarse-grained dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Effective dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Relative entropy estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Estimate of the relative entropy by a large deviation functional . . . . . . . . . . . 20
2.5.2 Estimating the rate-functional term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Wasserstein estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Estimates for general initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Langevin dynamics 30
3.1 Setup of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Coarse-graining map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Coarse-grained and Effective dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Relative entropy estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Wasserstein estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Passing to the limit in the regularization of the initial data . . . . . . . . . . . . . . . . . . . 39

4 Estimates under a scale separation assumption 39
4.1 Scale-separated potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Coarse-graining along coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Discussion 41
A Properties of the coarse-graining map 42
B Regularity of effective coefficients 44

1



1 Introduction

Coarse-graining or dimension reduction is the procedure of approximating a large and complex system by
a simpler and lower dimensional one, where the variables in the reduced model are called coarse-grained
or collective variables. Such a reduction is necessary from a computational point of view since an
all-atom molecular simulation of the complex system is often unable to access information about relevant
temporal and/or spatial scales. Further this is also relevant from a modelling point of view as the
quantities of interest are often described by a smaller class of features. For these reasons coarse-graining
has gained importance in various fields and especially in molecular dynamics.

Typically coarse-graining requires scale separation, i.e. the presence of fast and slow scales. In this setting,
as the ratio of fast to slow increases, the fast variables remain at equilibrium with respect to the slow
ones. Therefore the right choice for the coarse-grained variables are the slow ones. Such a situation has
been dealt via various techniques: the Mori-Zwanzig projection formalism [Gra82, GKS04], Markovian
approximation to Mori-Zwanzig projections [HEVEDB10] and averaging techniques [Har07, PS08] to
name a few. Recently in [BS13, LVE14], coarse-graining techniques based on committor functions have
been developed for situations where scale separation is absent.

As pointed out by the literature above and extensive references therein, the question of systematic
coarse-graining has received wide attention over the years. However the question of deriving quantitative
estimates and explicit bounds even in simple cases is a more challenging one to answer. Legoll and
Lelièvre [LL10] provide first results which address this question. Starting from the overdamped Langevin
equation as the reference they derive explicit quantitative estimates using relative entropy techniques.
Recently, the two authors together with Olla have derived trajectorial estimates [LLO17].

The work of [LL10] has certain limitations: (1) the quantitative estimates work only in the presence
of a single coarse-grained variable and (2) the estimates are only applicable to overdamped Langevin
equation. Having a single coarse-grained variable is an obvious issue from a modelling perspective.
In practice, the (underdamped) Langevin equation is often preferred over the overdamped Langevin
equation since it is closer to the Hamiltonian dynamics and therefore is seen as a natural choice to
sample the canonical measure.

The aim of the present work is to generalise the ideas introduced in [LL10] to overcome the limitations
mentioned above. In recent years it has been discovered that a large class of evolution equations and
specifically the Langevin and the overdamped Langevin equations have a natural variational structure
that arises as a large-deviation characterization of some stochastic process [ADPZ11, DPZ13, MPR14],
which can be employed for qualitative coarse-graining [DLPS17]. Using this connection to large-
deviations theory, we give structure to the relative entropy techniques used in [LL10]. This structure
allows us to extend their results to the case of multiple coarse-grained variables and to the Langevin
dynamics. We also present new error estimates in the second-order Wasserstein distance (henceforth
called Wasserstein-2), which is a standard tool in the theory of optimal transport [Vil03] and gradient
flows [AGS08].

1.1 The central question

We will consider two equations: the overdamped and the full Langevin equation. To start with we will
focus on the simpler overdamped Langevin equation

dX t = −∇V (X t) d t +
Æ

2β−1 dW d
t , X t=0 = X0. (1.1)

Here X t ∈ Rd is the state of the system at time t, V is a potential, β = 1/(kB Ta) is the inverse temperature,
W d

t is a d-dimensional Brownian motion and X0 is the initial state of the system.
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The aim is to study approximations of this system in the form of low-dimensional stochastic differential
equations (SDEs). This question is motivated by the field of molecular dynamics, where the study of
low-dimensional versions is extremely relevant to address the problems of numerical complexity arising
in large systems.

The key idea that allows for such an approximation is to consider not the full information present in X ,
but only a reduced low-dimensional version t 7→ ξ(X t), characterized by a coarse-graining map

ξ : Rd → Rk with k < d. (1.2)

The projection space could be replaced by a general smooth k-dimensional manifold as considered for
particular examples in [FKE10, Rei00]. However, for the sake of presentation and to avoid technical
di�culties, we work with Rk. Given a coarse-graining map ξ, the evolution of ξ(X t) follows from Itô’s
formula,

dξ(X t) = (−Dξ∇V + β−1∆ξ)(X t) d t +
Æ

2β−1|DξDξ>|(X t) dW k
t , (1.3)

where W k
t is the k-dimensional Brownian motion

dW k
t =

Dξ
p

|DξDξ>|
(X t)dW d

t .

Equation (1.3) is not closed since the right hand side depends on X t . This issue is addressed by working
with a different random variable Ŷt proposed by Gyöngy [Gyö86] which has the property that it has the
same time marginals as ξ(X t) i.e. law(ξ(X t)) = law(Ŷt) (see Proposition 2.8). The random variable Ŷ
evolves according to

dŶt = −b̂(t, Ŷt) d t +
q

2β−1Â(t, Ŷt) dW k
t , (1.4)

where
b̂(t, z) := E

�

(Dξ∇V − β−1∆ξ)(X t)
�

�ξ(X t) = z
�

,

Â(t, z) := E
�

|DξDξ>|(X t)
�

�ξ(X t) = z
�

.
(1.5)

We will refer to both Ŷt and ρ̂t := law(Ŷt) as the coarse-grained dynamics. Note that the coe�cients in
the evolution of Ŷ are time dependent and require knowledge about the law of X t . This renders this
closed version (1.4) as computationally intensive as the original system (1.3).

Legoll and Lelièvre [LL10] suggest replacing (1.4) by the following SDE:

dYt = −b(Yt) d t +
Æ

2β−1A(Yt) dW k
t , (1.6)

with coe�cients
b(z) = Eµ

�

(Dξ∇V − β−1∆ξ)(X )
�

�ξ(X ) = z
�

,

A(z) = Eµ
�

|DξDξ>|(X )
�

�ξ(X ) = z
�

.
(1.7)

Here Eµ is the expectation with respect to the Boltzmann-Gibbs distribution µ

dµ(q) = Z−1 exp(−βV (q))dq, (1.8)

which is the stationary measure for the overdamped Langevin dynamics (1.1). Following [LL10], we
will refer to both Yt and ηt := law(Yt) as the effective dynamics. Note that the coe�cients b, A in (1.7)
are time-independent as they only depend on the Boltzmann-Gibbs distribution, and therefore can be
calculated o�ine. This makes the effective dynamics (1.6) easier to work with numerically.

Using the effective dynamics (1.6) instead of the coarse-grained dynamics (1.5) is justified only if
the coe�cients of the effective dynamics (1.7) are good approximations for the coe�cients of the
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coarse-grained dynamics. This of course happens when there is an inherent scale-separation present in
the system, i.e. if ξ(X t) is indeed a slow variable, due to which on the typical time scale of slow variable,
X t samples like the stationary measure from the level set {ξ(X t) = z}.

Now we state the central question of this paper:

Can the difference between the solutions of the coarse-grained dynamics (1.4) and the effective dynamics (1.6)
be quantified, if so in what sense and under what conditions on the coarse-graining map ξ?

1.2 Overdamped Langevin dynamics

The solutions Ŷ of the coarse-grained dynamics (1.4) and Y of the effective dynamics (1.6) can be
compared in a variety of ways: pathwise comparison, comparison of laws of paths and comparison of
time marginals. We will focus on the last of these and will estimate

sup
t∈(0,T )

(distance(ρ̂t ,ηt)) , (1.9)

with ρ̂t = law(Ŷt) and ηt = law(Yt). The first choice of distance is the relative entropy1. The relative
entropy of a probability measure ζ with respect to another probability measure ν is defined by

H(ζ|ν) =







∫

f log f dν if ζ� ν and f =
dζ
dν

,

+∞ otherwise.

(1.10)

Now we state the central relative-entropy result.

Theorem 1.1. Under the assumptions of Theorem 2.15, for any t ∈ [0, T]

H(ρ̂t |ηt)≤ H(ρ̂0|η0) +
1
4

�

λ2
H +

κ2
Hβ

2

αTIαLSI

�

�

H(ρ0|µ)−H(ρt |µ)
�

. (1.11)

Here ρt := law(X t) is the law of the solution to the overdamped Langevin equation (1.1), ρ0, ρ̂0,η0 are
the initial data at t = 0, µ is the Boltzmann-Gibbs distribution (1.8) and the constants λH,κH,αTI, αLSI,
encoding the assumptions on V and ξ, are made explicit in Theorem 2.15.

The second choice for the distance in (1.9) is the Wasserstein-2 distance. The Wasserstein-2 distance
between two probability measures ν,ζ ∈ P (X ) on a metric space (X , d) is defined as

W2
2(ν,ζ) := inf

Π∈Γ (ν,ζ)

�∫

X×X

d(x1, x2)
2 dΠ(x1, x2)

�

, (1.12)

where Γ (ν,ζ) is the set of all couplings of ν and ζ, i.e. measures Π on X × X such that for any Borel set
A⊂ X

∫

A×X

dΠ(x1, x2) = ν(A) and

∫

X×A

dΠ(x1, x2) = ζ(A). (1.13)

In the case of X = Rk we use the euclidean distance d(x1, x2) = |x1− x2|. We now state our main result
on the Wasserstein-2 distance.

1Strictly speaking, the relative entropy is not a distance but it is widely used as a measurement of the difference between two
probability measures.
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Theorem 1.2. Under the assumptions of Theorem 2.23, for any t ∈ [0, T]

W2
2(ρ̂t ,ηt)≤ e c̃W t

�

W2
2(ρ̂0,η0) +

�

4λ2
W + βκ

2
W

αTIαLSI

�

�

H(ρ0|µ)−H(ρt |µ)
�

�

. (1.14)

Here ρt := law(X t) is the law of the solution of the the overdamped Langevin equation (1.1), ρ0, ρ̂0,η0
are the initial data at t = 0, µ is the Boltzmann-Gibbs distribution (1.8), and the constants λW,κW, c̃W,
encoding the assumptions on V and ξ are made explicit in Theorem 2.23.

The constants κH, κW, λH, λW, αTI and αLSI in the statements (1.11) and (1.14) of Theorem 1.1 and 1.2,
quantify different aspects of the compatibility of the coarse-graining map ξ and the dynamics. The
constants αTI and αLSI are constants occurring in functional inequalities (Talagrand and Log-Sobolev)
for the coarse grained equilibrium measure. For multi-scale systems, these constants are large when the
coarse-graining map resolves the scale separation (see Section 4). The constants κH and κW measure
the cross-interaction of the slow and fast scales. The constants λH and λW measure how well the slow
manifold is adapted to the model space Rk. A more detailed discussion of these constants will be
provided in the coming sections.

Comparison of the relative-entropy and Wasserstein estimate. Let us compare the relative-entropy
estimate (1.11) and the Wasserstein estimate (1.14). Assuming that both the coarse-grained and the
effective dynamics have the same initial data ρ̂0 = η0, these estimates become

H(ρ̂t |ηt) ≤
1
4

�

λ2
H +

κ2
Hβ

2

αTIαLSI

�

�

H(ρ0|µ)−H(ρt |µ)
�

, (1.15)

W2
2(ρ̂t ,ηt)≤ e c̃W t

�

4λ2
W + βκ

2
W

αTIαLSI

�

�

H(ρ0|µ)−H(ρt |µ)
�

. (1.16)

As mentioned earlier, κH,λW,κW are positive constants. Under the assumption of scale-separation, the
constants αTIαLSI are large (see Section 4). Hence, the right hand side of the Wasserstein estimate (1.16)
becomes small, i.e. it is O(1/αTIαLSI), whereas the right hand side of the relative entropy estimate
is O(1) since it still has the constant λH. By definition (see (2.47) for exact definition) λH is small if
(A− DξDξ>) is small in L∞ on the level set. In particular, λH = 0 corresponds to a�ne coarse-graining
maps ξ. Therefore in the presence of scale separation, the relative entropy estimate is sharp only for
close-to-a�ne coarse-graining maps, whereas the Wasserstein estimate is sharp even for the non-a�ne
ones.

Finally let us analyze the long-time behaviour of (1.15) and (1.16). By construction, the coarse-grained
and the effective dynamics should be the same in the limit of long time i.e. H(ρ̂t |ηt)→ 0 as t →∞.
Using 0≤ H(ρt |µ), the right-hand side of (1.15) can be controlled by a constant (independent of time)
while the right-hand side of (1.16) is exponentially increasing in time. Though both estimates are not
sharp, the relative entropy estimate has better long-time properties as compared to the Wasserstein
estimate. However the error in the long-time behaviour of these estimates can be corrected using the
knowledge that the original dynamics is ergodic with respect to the stationary measure as done in [LL10,
Corollary 3.1].

1.3 Langevin equation

So far we have focused on the overdamped Langevin equation. The second main equation considered in
this article is the Langevin equation

dQ t =
Pt

m
dt

dPt = −∇V (Q t) d t −
γ

m
Pt d t +

Æ

2γβ−1 dW d
t ,

(1.17)
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with initial data (Q t=0, Pt=0) = (Q0, P0). Here (Q t , Pt) ∈ Rd ×Rd is the state of the system at time t,
more specifically Q t ∈ Rd and Pt ∈ Rd can physically be interpreted as the position and the momentum
of the system. The constant γ > 0 is a friction parameter, V is the spatial potential as before, m is the
mass and β = 1/(kB Ta) is the inverse temperature. In what follows, we choose m= 1 for simplicity.

Our interest as before is to study lower-dimensional approximations of the Langevin equation. To make
this precise we need to define a coarse-graining map akin to the overdamped Langevin case, this time
on the space of positions and momenta. In applications, the choice of the coarse-grained position is
often naturally prescribed by a spatial coarse-graining map ξ with Rd 3 q 7→ ξ(q) ∈ Rk. However, we
have a freedom in defining the coarse-grained momentum. Motivated by the evolution of Q t in (1.17),
a possible choice for the coarse-grained momentum is p 7→ Dξ(q)p, where Dξ is the Jacobian of ξ. This
leads to the coarse-graining map Ξ on the 2d-dimensional phase space

Ξ : R2d → R2k, Ξ(q, p) =
�

ξ(q)
Dξ(q)p

�

. (1.18)

However, we are only able to show the main results under the additional assumption, that ξ is affine,
i.e. it is of the form

ξ(q) = Tq+τ, (1.19)

for some τ ∈ Rk and T ∈ Rk×d of full rank. Note that in that case the coarse-graining map Ξ is simply

Ξ(q, p) =
�

Tq+τ
Tp

�

.

Using (1.18) as a coarse-graining map when the spatial coarse-graining map ξ is non-a�ne leads to
issues of well-posedness in the corresponding effective dynamics (see Remark 3.1). There are other
possible choices for the coarse-grained momentum as discussed in [LRS10, Section 3.3.1.3], but these
do not resolve the well-posedness issues. Constructing the coarse-grained momentum, in the case of
non-a�ne spatial coarse-graining map is an open question, and is left for future research.

Having fixed Ξ in (1.18), we can now apply the same scheme as used in the overdamped Langevin case
and define the coarse-grained dynamics as

d Ẑt = V̂t d t

dV̂t = −b̂(t, Ẑt , V̂t) d t − γV̂t d t +
q

2γβ−1Â(t, Ẑt , V̂t) dW k
t ,

(1.20)

with coe�cients

b̂(t, z, v) := E[(Dξ∇V )(Q t , Pt) |Ξ(Q t , Pt) = (z, v)], (1.21)

Â(t, z, v) := E
�

(DξDξ>)(Q t , Pt)
�

�Ξ(Q t , Pt) = (z, v)
�

. (1.22)

As before, the coarse-grained dynamics satisfies law(Ξ(Q t , Pt)) = law(Ẑt , V̂t). Similar to the earlier
discussion we define the effective dynamics as

dZt = Vt d t

dVt = −b(Zt , Vt) d t − γVt d t +
Æ

2γβ−1A(Zt , Vt) dW k
t ,

(1.23)

with time-independent coe�cients

b(z, v) := Eµ[(Dξ∇V )(Q, P) |Ξ(Q, P) = (z, v)],

A(z, v) := Eµ
�

(DξDξ>)(Q, P)
�

�Ξ(Q, P) = (z, v)
�

.

Here Eµ denotes the expectation with respect to the Boltzmann-Gibbs distribution

dµ(q, p) = Z−1 exp(−βH(q, p)), with H(q, p) :=
p2

2m
+ V (q), (1.24)
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which is the equilibrium probability density of the Langevin equation. In the case when ξ satisfies (1.19),
we find

∀(z, v) ∈ R2k : A(z, v) = Â(t, z, v) = TT>. (1.25)

As in the overdamped case, we prove estimates on the error between ρ̂t = law(Ẑt , V̂t) and ηt =
law(Zt , Vt) in relative-entropy and Wasserstein-2 distance. We now state the main relative-entropy
result.

Theorem 1.3. Under the assumptions in Theorem 3.5, then for any t ∈ [0, T]

H(ρ̂t |ηt)≤ H(ρ̂0|η0) +
κ2 t
2αTI

H(ρ0|µ). (1.26)

Here ρt := law(Q t , Pt) is the law of the solution of the Langevin equation (1.17), ρ0, ρ̂0,η0 are the initial
data at t = 0, µ is the Boltzmann-Gibbs distribution (1.24) and κ,αTI are constants made explicit in
Theorem 3.5.

Next we present the main Wasserstein estimate for the Langevin case.

Theorem 1.4. Under the assumptions in Theorem 3.6, for any t ∈ [0, T]

W2
2(ρ̂t |ηt)≤ e c̃ t

�

W2
2(ρ̂0|η0) +

2κ2 t
αTI

H(ρ0|µ)
�

. (1.27)

Here ρt := law(Q t , Pt) is the law of the solution to the Langevin equation (1.17), ρ0, ρ̂0,η0 are the initial
data at t = 0, µ is the Boltzmann-Gibbs distribution (1.24) and κ, αTI, c̃ are constants made explicit in
Theorems 3.5 and 3.6.

1.4 Central ingredients of the proofs

As mentioned earlier, in this article we use two different notions of distance to compare the coarse-
grained dynamics ρ̂t = law(Ŷt) and the effective dynamics ηt = law(Yt): the relative entropy (1.10)
and the Wasserstein-2 distance (1.12). Now we briefly discuss the main ingredients that go into proving
these estimates.

1.4.1 Encoding scale-separation via functional inequalities

The choice of the coarse-graining map ξ is often naturally prescribed by scale-separation, i.e. the
presence of fast and slow scales typically characterised by an explicit small parameter in the system.
For instance, the potential could be of the form V ε(q) = 1

ε V0(q) + V1(q). In this case, V0 is the driving
potential for the fast and V1 for the slow dynamics. A good coarse-graining map satisfies the condition
Dξ(q)∇V0(q) = 0, i.e. integral curves of q̇ = V (q) stay in the level set of ξ.

Legoll and Lelièvre [LL10] use the framework of functional inequalities to characterize the presence of
scale separation. These functional inequalities have the advantage that they do not require the presence
of an explicit small parameter; however, when such a parameter is indeed present it may be reflected
in the constants associated to these inequalities. Following Legoll and Lelièvre, in this paper we will
also use these inequalities, specifically the Logarithmic-Sobolev (hereon called Log-Sobolev) and the
Talagrand inequality, to encode scale separation. For the definition of these inequalities see Section 2.2
and for the results regarding the class of scale separated potentials see Section 4.1.
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1.4.2 Relative entropy results

Legoll and Lelièvre [LL10] give first results which estimate the relative entropy H(ρ̂t |ηt) for the case of
the overdamped Langevin equation. Their estimate is based on differentiating the relative entropy in
time and proving appropriate bounds on the resulting terms. Recently in [DLPS17] the authors introduce
a variational technique, which is based on a large-deviation rate functional and its relations to the relative
entropy and the Fisher information, for qualitative coarse-graining. Specifically, they study the (Vlasov-
type) Langevin dynamics in various asymptotic regimes where coarse-grained dynamics are derived by
passing to the limit a small parameter representing the scale-separation in the system. In this paper,
we show that this technique can also be used to quantitatively estimate the coarse-graining error for
both the overdamped and full Langevin dynamics and without the explicit presence of scale-separation.
The basic estimate is a stability property of solutions to the Fokker-Planck equation with respect to the
relative entropy. Essentially, this property states that the error between solutions of two Fokker-Planck
equations can be explicitly estimated in terms of a large-deviation rate functional. A similar result has
also been derived by Bogachev et. al. [BRS16], without the connection to large-deviations theory. To
illustrate this property, consider two families (ζt)t∈[0,T], (νt)t∈[0,T] of probability measures which are
the solutions to two distinct Fokker-Planck equations. Then we find

H(ζt |νt)≤ H(ζ0|ν0) + I(ζ), (1.28)

where ζ0,ν0 are the initial data at time t = 0 and I(·) is the empirical-measure large-deviation rate
functional arising in a large-deviation principle for the empirical measure defined from many i.i.d. copies
of the SDE associated to ν (see Section 2.5.1 for details). The relative entropy result in Theorem 1.1
follows by making the choice ζ ≡ ρ̂ and ν≡ η in (1.28) and then analyzing the rate functional term
I(ρ̂) using its relations with the relative entropy and the Fisher information. Note that I(ρ̂) does not
show up in the final estimate (1.11) in Theorem 1.1.

1.4.3 Wasserstein estimates

The central ingredient in estimating the Wasserstein-2 distance W2(ρ̂t ,ηt) is the coupling method. Let
us consider the case of the overdamped Langevin equation for simplicity. The forward Kolmogorov
(Fokker-Planck) equation for Ŷt (1.4) is

∂t ρ̂t = divz(ρ̂t b̂) + β−1D2
z : (Âρ̂t),

and for Yt (1.6)

∂tηt = divz(ηt b) + β−1D2
z : (Aηt).

For any t > 0 and ρ̂t ,ηt ∈ P (Rk), we define a time-dependent coupling Πt ∈ P (R2k)

∂tΠt = D2
z : (AΠt) + divz(bΠt) (1.29)

where we write z= (z1, z2) and the coe�cients are given by

A(t, z1, z2) := σσ> with σ(t, z1, z2) :=

�Æ

Â(t, z1)
p

A(z2)

�

and b(t, z1, z2) :=

�

b̂(t, z1)
b(z2)

�

. (1.30)

The coupling method consists of differentiating
∫

R2k |z1 − z2|2 dΠt in time and using a Gronwall-type
argument to obtain an estimate for the Wasserstein-2 distance W2(ρ̂t ,ηt). The Gronwall argument also
explains the exponential pre-factor in (1.14). A similar approach also works for the Langevin case (see
Section 3.4). The particular coupling (1.30) has been used in the literature before and is called the
basic coupling [CL89]. The coupling method has commonly been used to prove contraction properties,
see e.g., [CL89, Ebe15, Duo15] and references therein.
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1.5 Novelties

The novelty of the work lies in the following.

1. In comparison with existing literature: Legoll and Lelièvre [LL10] prove error estimates in relative
entropy for the overdamped Langevin equation in the case of scalar-valued coarse-graining maps.
We generalise these estimates in two directions. First we prove error estimates in the case of
vector-valued coarse-graining maps, and secondly we prove error estimates starting from the
Langevin equation as a reference dynamics. More recently Legoll, Lelièvre and Olla [LLO17] have
derived pathwise estimates on the coarse-graining error starting with the overdamped Langevin
dynamics and a coordinate projection as a coarse-graining error. In this work we only focus on
error estimates in time marginals.

2. Large deviations and error quantification: The use of the rate functional as a central ingredient in
proving quantitative estimates is new. It has a natural connection (1.28) with the relative entropy,
which allows us to derive error estimates for the Langevin equation, which is not amenable to
the usual set of techniques used for reversible systems. This furthers the claim that the large-
deviation behaviour of the underlying particle systems can successfully be used for qualitative
and quantitative coarse-graining analysis of the Fokker-Planck equations.

3. Error estimates in Wasserstein distance: Since the Wasserstein distance is a weaker distance notion
than the relative entropy, the estimates derived in this distance are also weaker. However it turns
out that these error bounds are sharper in the limit of infinite scale-separation for a larger class of
coarse-graining maps as compared to the relative entropy estimates.

1.6 Outline

In Section 2 we derive error estimates for the overdamped Langevin equation and in Section 3 for the
Langevin equation. In Section 4 we discuss the estimates in the presence of explicit scale-separation.
Finally in Section 5 we conclude with further discussions.

2 Overdamped Langevin dynamics

This section deals with the case of the overdamped Langevin dynamics. In Section 2.1 we present a few
preliminaries and discuss the two important equations we will be working with: the coarse-grained
dynamics and the effective dynamics. In Section 2.5 and Section 2.6 we compare these two equations in
relative entropy and Wasserstein-2 distance respectively.

We now introduce the notion of solution to the Fokker-Planck equation, which we will be using in this
work.

Definition 2.1. Let [0, T] × Rn 3 (t, x) 7→ A(t, x) ∈ Rn×n
s ym be a non-negative symmetric matrix with

Borel measurable entries, called a diffusion matrix, and [0, T]×Rn 3 (t, x) 7→ b(t, x) ∈ Rn be a Borel
measurable vector field, called the drift coe�cient. Moreover, assume that A, b are locally bounded in x ,
that is for any compact set U ⊂ Rn and T > 0, there exists C = C(U , T )> 0 such that

sup
(t,x)∈[0,T]×U

{|A(t, x)|, |b(t, x)|} ≤ C . (2.1)

Then a family of probability measures (ρt)t∈[0,T] on Rn is a solution to the Cauchy problem

∂tρt = D2 : (Aρt) + div(bρt) and ρt=0 = ρ0, (2.2)
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provided that it has finite second moment for almost all t ∈ (0, T ) and

for any g ∈ C2
c (R

n) :

∫

Rn

g dρt =

∫

Rn

g dρ0 +

∫ t

0

∫

Rn

�

A : D2 g − b · Dg
�

dρt d t. (2.3)

Unless explicitly stated otherwise, this general definition will be implicitly used, if we speak of solutions
in the rest of this paper. The result [BKRS15, Theorem 6.7.3] implies that the solution set of the above
Cauchy problem is non-empty in the space of sub-probability measures. To ensure that the solution stays
in the class of probability measures, we have added the second moment bound to the solution concept.
We will check that the function x 7→ 1

2 |x |
2 acts as a Lyapunov function, which implies by [BKRS15,

Corollary 6.6.1, Theorem 7.1.1] the second moment condition and the conservation of probability mass.
Let us point out that in general, the above assumptions on the coe�cients are not su�cient to conclude
uniqueness of solutions to the Cauchy problem 2.2.

2.1 Setup of the system

The overdamped Langevin equation in Rd with potential V : Rd → R at inverse temperature β > 0 is
the stochastic differential equation, already mentioned as (1.1),

¨

dX t = −∇V (X t) d t +
p

2β−1 dW d
t ,

X t=0 = X0.
(2.4)

The corresponding forward Kolmogorov equation for the law ρt = law(X t) is the solution (in the sense
of Definition 2.1) to

¨

∂tρ = div(ρ∇V ) + β−1∆ρ,

ρt=0 = ρ0.
(2.5)

Throughout this section we assume that the potential V satisfies the following conditions.

Assumption 2.2. The potential V satisfies

(V1) (Regularity) V ∈ C3(Rd ;R) with e−βV ∈ L1(Rd).
(V2) (Growth conditions) There exists a constant C > 0 such that for all q ∈ Rd

|V (q)| ≤ C(1+ |q|2), |∇V (q)| ≤ C(1+ |q|), |D2V (q)| ≤ C . (2.6)

Here D2 is the Hessian on Rd . Condition (V1) ensures that (2.5) admits a normalizable stationary
solution µ ∈ P (Rd)

µ(dq) := Z−1
β exp(−βV (q)) dq with Zβ =

∫

Rd

exp(−βV (q)) dq. (2.7)

Moreover, we need certain regularity and growth assumptions on the coarse-graining map ξ : Rd → Rk

which identifies the relevant variables z := ξ(q) ∈ Rk from the entire class of variables q ∈ Rd . We will
fix the notation q ∈ Rd for the spatial coordinate and z ∈ Rk for the coarse-grained spatial coordinate.
We make the following assumption.

Assumption 2.3. The coarse-graining map ξ satisfies

(C1) (Regularity) ξ ∈ C3(Rd ;Rk) with Dξ having full rank k.
(C2) (Jacobian bounded away from zero) There exists a constant C > 0 such that DξDξ> ≥ C−1 Idk.
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(C3) (Growth conditions) There exists a constant C > 0 such that

‖Dξ‖L∞(Rk) ≤ C , |D2ξ(q)| ≤
C

1+ |q|2
, |D3ξ(q)| ≤ C ,

where Dξ, D2ξ, D3ξ are the successive derivative tensors of ξ.

While conditions (C1) and (C2) are standard [LL10, Proposition 3.1], the growth conditions (C3) on
D2ξ and D3ξ are required to ensure the well-posedness of the effective dynamics (see Theorem 2.11).
These assumptions can be weakened, for instance, it is su�cient to have certain superlinear decay for
D2ξ at infinity. However to keep the presentation simple we will not focus on these technical details.
The crucial implication of Assumption 2.3 is that ξ is affine at infinity, i.e. there exists a fixed T ∈ Rk×d

and a constant Cξ such that for all q ∈ Rd

|Dξ(q)− T | ≤
Cξ

1+ |q|
. (2.8)

See Lemma A.1 in the appendix for a proof of this implication.

We can now take a closer look at the closed push-forward equation and the corresponding approximate
equation introduced in Section 1.1. We make a few preliminary remarks to fix ideas and notations and
then present the exact coarse-grained and the approximate effective equation.

For any z ∈ Rk we denote by Σz the z-level set of ξ, i.e.

Σz := {q ∈ Rd : ξ(q) = z}. (2.9)

On any such level set Σz , there exists a canonical intrinsic metric dΣz
defined for y1, y2 ∈ Σz by

dΣz
(y1, y2) := inf

¨

∫ 1

0

|γ̇(s)| ds : γ ∈ C1([0,1],Σz),γ(0) = y1,γ(1) = y2

«

. (2.10)

The regularity assumptions (C1)–(C3) imply that there exists a constant C ≥ 1 such that for any z ∈ Rk

and any y1, y2 ∈ Σz ,
1
C
|y1 − y2| ≤ dΣz

(y1, y2)≤ C |y1 − y2|. (2.11)

We use Dξ ∈ Rk×d , G := DξDξ> ∈ Rk×k and Jacξ :=
p

det G to denote the Jacobian, metric tensor and
Jacobian determinant of ξ respectively. By condition (C2), Jacξ is uniformly bounded away from zero.

Using the co-area formula and the disintegration theorem, any ν ∈ P (Rd) that is absolutely continuous
with respect to the Lebesgue measure on Rd , i.e. ν(dq) = ν(q)L d(dq) for some density again denoted
by ν for convenience, can be decomposed into its marginal measure ξ#ν =: ν̂ ∈ P (Rk) satisfying
ν̂(dz) = ν̂(z)L k(dz) with density

ν̂(z) =

∫

Σz

ν(q)
H d−k(dq)
Jacξ(q)

, (2.12)

and for any z ∈ Rk the family of conditional measures ν( · |Σz) =: ν̄z ∈ P (Σz) satisfying ν̄z(dq) =
ν̄z(q)H d−k(dq) with density

ν̄z(q) =
ν(q)

Jacξ(q) ν̂(z)
. (2.13)

HereH d−k is the (d − k)-dimensional Hausdorff measure.
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Differential operators on the coarse-grained space Rk will be denoted with subscript z, i.e. ∇z , divz ,
∆z , Dz . This is to separate them from differential operators on the full space Rd which will have no
subscript. Further, we define the surface (tangential) gradient on Σz by

∇Σz
:= (Idd −Dξ>G−1Dξ)∇. (2.14)

We will often use the chain rule, which for su�ciently smooth g : Rk → R gives

D(g ◦ ξ) = Dξ>∇z g ◦ ξ and ∆(g ◦ ξ) =∆ξ · (∇z g) ◦ ξ+ D2
z g ◦ ξ : G. (2.15)

Here D2
z is the Hessian on Rk and A : B := tr A>B is the Frobenius inner product for matrices. For any

ψ ∈ L1(Rd ;R) and any random variable X on Rd with law(X ) = ψ(q) dq, the law of ξ(X ) satisfies
law(ξ(X )) =ψξ(z) dz, where ψξ : Rk → R is defined by

ψξ(z) :=

∫

Σz

ψ

Jacξ
dH d−k . (2.16)

This follows from the co-area formula which gives
∫

Rd ψ(q) dq =
∫

Rk ψ
ξ(z) dz. The following lemma

explicitly characterizes the Rk-derivative of ψξ.

Lemma 2.4. For ψ ∈W 1,1(Rd) and ψξ defined in (2.16) one has

∇zψ
ξ(z) =

∫

Σz

div(ψG−1Dξ)
dH d−k

Jacξ
. (2.17)

Similarly, for B ∈ L1(Rd ;Rk×k
s ym) and Bξ defined component-wise as in (2.16),

divz Bξ(z) =

∫

Σz

div(BG−1Dξ)
dH d−k

Jacξ
. (2.18)

The divergence of the matrices above is defined by

divz Bξ ∈ Rk with (divz Bξ)i =
k
∑

j=1

(Bξi j), j for 1≤ i ≤ k;

and for A∈ Rk×d

div A∈ Rk with (div A)i =
d
∑

j=1

(Ai j), j for 1≤ i ≤ k.

The proof is an extension of [LL10, Lemma 2.2] to higher dimensions and we include it for convenience
in Appendix A. Another object of interest is the so called local mean force F : Rd → Rk,

F := G−1Dξ∇V − β−1 div(G−1Dξ). (2.19)

This object is related to the Lebesgue density of the coarse-grained stationary measure µ̂ = ξ#µ. By
applying Lemma 2.4 to log µ̂(z) we find

−β−1∇z log µ̂(z) =

∫

Σz

F dµ̄z , (2.20)

which clarifies the name local mean force. For further interpretation and properties see [LL10, Section
2.1].
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Finally, we introduce some notation for norms of vectors and matrices. We write |v| for the standard
Euclidean norm of a vector v in Rd or Rk, and we write |M | for the operator norm of a matrix in Rd×d ,
Rd×k, Rk×d , or Rk×k. With these norms we have inequalities of the type

|M v| ≤ |M | |v| for v ∈ Rd and M ∈ Rk×d (as an example).

In Theorem 2.15 below we also use a weighted Euclidean norm |v|2A := (v, Av), for A∈ Rk×k and v ∈ Rk.
We write the corresponding norm of a matrix M ∈ Rk×d , viewed as an operator from (Rd , |·|) to (Rk, |·|A),
as |M |I→A. In Section 2.6 we will also use the Frobenius norm of a matrix M ∈ Rk×k,

|M |F :=
k
∑

i, j=1

|Mi j |2 = tr M T M .

Note that the operator norm and the Frobenius norm are related by |M | ≤ |M |F ≤
p

k|M |. The
corresponding operator norm for a three-tensor T ∈ Rk×k×k, viewed as a mapping from (Rk, | · |) to
(Rk×k, | · |F ), is noted as | · |I→F .

2.2 Functional inequalities

As discussed in the introduction, an important ingredient for proving error estimates is the framework
of functional inequalities which we use to encode the assumption of scale-separation. Let us introduce
the Poincaré, Talagrand and Log-Sobolev inequality.

Definition 2.5 (Poincaré, Talagrand and Log-Sobolev inequality). A probability measure ν ∈ P (X ),
where X ⊆ Rd is a smooth submanifold, satisfies

(PI) the Poincaré inequality with constant αPI if

∀ f ∈ H1(ν) : varν( f ) :=

∫

X

�

f −
∫

X

f dν

�2

dν≤
1
αPI

∫

X

|∇ f |2dν. (2.21)

(TI) the Talagrand inequality with constant αTI if

∀ζ ∈ P (X ) : W2
2(ζ,ν)≤

2
αTI

H(ζ|ν), (2.22)

where W2(·, ·) is the Wasserstein-2 distance (1.12) and H( · | · ) is the relative entropy (1.10).
(LSI) the Log-Sobolev inequality with constant αLSI if

∀ζ ∈ P (X ) : H(ζ|ν)≤
1

2αLSI
RF(ζ|ν). (2.23)

For any two probability measures ν,ζ ∈ P (X ), the relative Fisher information of ζ with respect to
ν is defined by

RF(ζ|ν) =







∫

X

�

�

�

�

∇ log
�

dζ
dν

�

�

�

�

�

2

dζ, if ζ� ν and ∇ log
�

dζ
dν

�

∈ L2(X ;ζ),

+∞, otherwise.
(2.24)

Here the notion of ∇ depends on the manifold X and will be made explicit when it occurs. For X = Rd ,
we have as usual ∇= (∂1, . . . ,∂d), whereas for X = Σz we use the surface gradient ∇=∇Σz

.

Remark 2.6. The Log-Sobolev inequality implies the Talagrand inequality and the Talagrand inequality
implies the Poincaré inequality, such that one has the following estimates on the constants: 0≤ αLSI ≤
αTI ≤ αPI (see [BGL01, Corollary 3.1] and [OV00] for details).
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We will use these inequalities by assuming that the conditional stationary measure µ̄z satisfies either the
Talagrand inequality or the Log-Sobolev inequality on Σz uniformly in z ∈ Rk. In the introduction we
described various bounds on H(ρ̂t |ηt) and W2(ρ̂t ,ηt), and it will turn out that these bounds become
sharp when αTI,αLSI are large.

Remark 2.7. We will assume below that the initial measure ρ0 has finite entropy H(ρ0|µ) with respect to
the stationary measure µ. This implies the dissipation inequality (see for instance [DLR13, Proposition
4.6] and [DLPS17, Theorem 2.3])

H(ρt |µ) + β−1

∫ t

0

RF(ρs|µ) ds ≤ H(ρ0|µ) for all t ∈ [0, T]. (2.25)

2.3 Coarse-grained dynamics

The coarse-grained dynamics Ŷt is the solution of the stochastic differential equation
¨

dŶt = −b̂(t, Ŷt) d t +
Æ

2β−1Â(t, Ŷt) dW k
t ,

Ŷt=0 = Y0,
(2.26)

with coe�cients b̂ and Â defined in (2.28) and (2.29) below. It is related to the full overdamped
Langevin dynamics via the relation law(ξ(X t)) = law(Ŷt), which we show next.

Proposition 2.8 ([Gyö86]). If ρ is a solution to (2.5), then ξ#ρt =: ρ̂t ∈ P (Rk) evolves according to
¨

∂t ρ̂ = β−1D2
z : (Âρ̂) + divz(ρ̂ b̂),

ρ̂t=0 = ρ̂0,
(2.27)

with coefficients b̂ : [0, T]×Rk → Rk, Â : [0, T]×Rk → Rk×k

b̂(t, z) = Eρ̄t,z
[Dξ∇V − β−1∆ξ], (2.28)

Â(t, z) = Eρ̄t,z
[G]. (2.29)

Here ρ̄t,z is the conditional measure corresponding to ρ. Moreover, ρ̂ has second moments that are bounded
uniformly in time.

Proof. According to Definition 2.1 the family (ρt)t∈[0,T] solves for almost all t ∈ (0, T ) and every
f ∈ C2

c (R
d)

0=

∫

Rd

( f dρt − f dρ0)−
∫ t

0

∫

Rd

(β−1∆ f −∇ f · ∇V ) dρt d t. (2.30)

The proof follows by substituting f = g ◦ξ for some g ∈ C2
c (R

k), where we note that by Assumption 2.3
we have f ∈ C2

c (R
d).

Since the original dynamics ρt has bounded second moments, ρ̂ shares the same property by the
estimate

∫

Rk

|z|2ρ̂t(dz) =

∫

Rd

|ξ(q)|2ρt(dq)≤ 2

�

|ξ(0)|2 + ‖Dξ‖2
∞

∫

Rd

|q|2ρt(dq)

�

< +∞.
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Similarly, assuming that the initial measure ρ0 has finite relative entropy H(ρ0|µ), the same holds for
the push-forward ρ̂0, and we have a similar dissipation inequality as (2.25):

Corollary 2.9. If H(ρ0|µ)<∞, then

H(ρ̂t |µ̂) + β−1

∫ t

0

RFA(ρ̂s|µ̂) ds ≤ H(ρ0|µ) for all t ∈ [0, T], (2.31)

where RFA is the relative Fisher Information on Rk with metric A,

RFA(ρ̂s|µ̂) :=







∫

Rk

�

�

�

�

∇z log
�

dρ̂s

dµ̂

�

(z)

�

�

�

�

2

A(z)
dρ̂s(z), if ρ̂s � µ̂ and ∇z log

�

dρ̂s

dµ̂

�

∈ L2(Rk; µ̂),

+∞, otherwise.

Proof. The proof follows from a standard application of the tensorization principle of the relative entropy
and the Fisher information to the dissipation inequality (2.25). For the relative entropy it reads

H(ρt |µ) =
∫

Rk

H(ρ̄t,z |µ̄z) dρ̂t +H(ρ̂t |µ̂).

For the Fisher information, we use for convenience the following projection

P : Rd → Rd with P = Dξ>G−1Dξ.

Then we have the orthogonal splitting of the gradient into its normal P∇ and tangential part (Id−P)∇=
∇Σz

. In particular for ρ� µ we find

∫

Rd

�

�

�

�

∇ log
dρt

dµ

�

�

�

�

2

dρt =

∫

Rd

��

�

�

�

P∇ log
dρt

dµ

�

�

�

�

2

+

�

�

�

�

∇Σz
log

dρt

dµ

�

�

�

�

2�

dρt .

By definition of the marginal measure and using the disintegration theorem we arrive at
∫

Rd

�

�

�

�

P∇ log
dρt

dµ

�

�

�

�

2

dρt =

∫

Rd

�

�

�

�

P∇ log
dρ̂t ◦ ξ
dµ̂ ◦ ξ

�

�

�

�

2

dρt =

∫

Rk

∫

Σz

�

�

�

�

PDξ>∇z log
dρ̂t

dµ̂

�

�

�

�

2

dρ̄t,z dρ̂t(z).

The last observation needed is that since P is a projection, for any v, z ∈ Rk it follows that
∫

Σz

�

�PDξ>v
�

�

2
dρ̄t,z =

∫

Σz

v · DξPDξ>vdρ̄t,z = v ·Eρ̄t,z
[G]v = |v|2A,

where | · |A is defined on page 12. Here we have used DξPDξ> = DξDξ> = G. Hence (2.31) follows
from (2.25).

2.4 Effective dynamics

Next, let us define the effective dynamics Yt ,
¨

dYt = −b(Yt) d t +
p

2β−1A(Yt) dW k
t ,

Yt=0 = Y0,
(2.32)

with the corresponding forward Kolmogorov equation for the law ηt = law(Yt),
¨

∂tη= divz(η b) + β−1D2
z : (Aη),

ηt=0 = η0.
(2.33)
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The coe�cients b : Rk → Rk, A : Rk → Rk×k are

b(z) := Eµ̄z
[Dξ∇V − β−1∆ξ], (2.34)

A(z) := Eµ̄z
[G], . (2.35)

Note that the expectations are taken with respect to the conditional stationary measure µ̄z . The effective
dynamics admits the measure µ̂ := ξ#µ as a stationary solution [LL10, Lemma 2.4].

Remark 2.10 (Effective dynamics is a gradient flow). By using Lemma 2.4 and the explicit definition of
µ̄z (2.13) it follows that

divz A=

∫

Σz

�

µG∇z

�

1
µ̂(z)

�

+
1
µ̂(z)

div(µDξ)
�

dH d−k

Jacξ

=

∫

Σz

µ

µ̂

�

Dξ∇ logµ+∆ξ− G(∇z log µ̂)
�dH d−k

Jacξ
,

and therefore divz A= −β b− A∇z log µ̂. Hence we can rewrite the effective dynamics (2.33) as

∂tη= β
−1(divz(A∇zη) + divz(ηA∇z(− log µ̂))). (2.36)

With the free energy E (η) := β−1
∫

(η logη−η log µ̂) and by using δE (η) = β−1 log ηµ̂ for the variational
derivative, we can write

∂tη= divz(ηA∇z(δE (η))) = β−1 divz

�

ηA∇z log
η

µ̂

�

. (2.37)

This formally indicates that the effective dynamics is a Wasserstein-2 gradient flow of E with respect to
the space dependent metric 〈z1, z2〉A := 〈z1, Az2〉 on Rk. Using the form (2.37) of the effective equation,
it is easily seen that µ̂ is the stationary measure of the effective dynamics. Therefore the long-time limit
of the coarse-grained and the effective dynamics are the same as ρt converges to µ.

Next we discuss the well-posedness of the effective dynamics (2.33). The existence of a solution for the
effective dynamics as a family of probability measures in the sense of Definition 2.1 is a subtle issue,
even though the effective dynamics is uniformly parabolic. Essentially, we need to rule out finite-time
explosion, which is closely related to the condition of ξ being a�ne at infinity (recall Lemma A.1) which
is a consequence of the growth conditions (C1)-(C3). We show that under these growth conditions
the effective drift b is Lipschitz (see Lemma 2.12), and as a consequence the solution to the effective
dynamics does not explode in finite time.

Before doing so, let us point out that all the main results depend on the relative entropy of the initial
data with respect to the Gibbs measure. Hence, we will assume for the proof, that the initial datum
ρ0 = law(X0) has bounded relative entropy with respect to µ

H(ρ0|µ)< +∞. (2.38)

This implies ρ0� µ and so we can define f0 := dρ0/dµ.

Henceforth, to avoid certain technicalities we assume that












dρ0

dµ













L∞
+













dµ
dρ0













L∞
<∞. (2.39)

This assumption can be made without any loss of generality. To see this, we introduce the truncation

f M
0 :=

1
ZM

min
§

max
§

f0,
1
M

ª

, M
ª

, (2.40)
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where ZM is a normalization constant to ensure that f M
0 µ is a probability measure. By standard

comparison principle results for parabolic equations [PW12, Chapter 3], we then find that the solution
ρM with initial data ρM

0 := f M
0 µ satisfies

1
M ZM

µ≤ ρM
t ≤

M
ZM
µ. (2.41)

In Section 2.7 we will show that the final estimates obtained are independent of the constant M and
hence we can let M →∞.

Theorem 2.11 (Well-posedness of effective dynamics). Assume the following:

1. The initial datum η0 has bounded second moments, i.e.
∫

Rk |z|2 dη0 < +∞.
2. The conditional stationary measure µ̄z satisfies the Poincaré inequality (2.21) uniformly in z ∈ Rk

with constant αPI > 0, where the gradient in the Poincaré inequality is given by ∇Σz
.

Then there exists a unique family of probability measures (ηt)t∈[0,T] which solves the effective dynam-
ics (2.33) in the sense of Definition 2.1. Furthermore, this family has bounded second moments, i.e.

∀t ∈ [0, T] :

∫

Rk

|z|2 dηt < +∞.

To prove Theorem 2.11 we need some control on the growth of the coe�cients, which we summarize
below.

Lemma 2.12. If the stationary conditional measures {µ̄z}z∈Rk satisfy a Poincaré inequality (2.21) uniformly
in z ∈ Rk with constant αPI, V and ξ satisfy Assumptions 2.2 and 2.3, then the effective vector drift b and
the effective diffusion matrix A are Lipschitz, and for some C > 0

b ∈W 1,∞
loc (R

k;Rk) with sup
z∈Rk
|∇z b(z)| ≤ C (2.42)

and
A∈W 1,∞(Rk;Rk×k) with

1
C

Idk ≤ A(z)≤ C Idk . (2.43)

The proof of Lemma 2.12 is provided in Appendix B. The growth conditions on D2ξ, D3ξ in (C3) are
critical in the proof. Since the diffusion matrix A in the effective dynamics is bounded, it is the Lipschitz
property of b implied by the growth conditions which ensures that the solution to the effective dynamics
does not explode in finite time.

Proof of Theorem 2.11. The existence of solutions to the effective dynamics (2.33) follows from [BKRS15,
Theorem 6.6.2]. Since b is Lipschitz, say with a constant Lb (see Lemma 2.12), we find

d
d t

∫

Rk

|z|2

2
dηt = −

∫

Rk

z · b(z) dηt +

∫

Rk

Idk : Adηt

= −
∫

Rk

z · (b(z)− b(0))dηt +

∫

Rk

Idk : Adηt − b(0)

∫

Rk

z dηt

≤
�

Lb +
b(0)

2

�

∫

Rk

|z|2 dηt + C .

Applying a Gronwall-type estimate to this inequality and using the bounded second moment for the
initial data implies bounded second moments for ηt . The conclusion follows by approximating the
function z 7→ |z|2/2 in the test-function class C∞c (R

k). The uniqueness of the effective dynamics follows
from [BKRS15, Theorem 9.4.3] under the given assumptions.
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Remark 2.13. We want to emphasize that a similar result does not hold in general for the coarse-grained
dynamics. The diffusion coe�cient Â in (2.29) and vector field b̂ in (2.28) depend on the conditional
measure ρ̄t,z corresponding to the solution. In particular, proving regularity properties of the coarse-
grained coe�cients will require strong assumptions on the initial data, which we wish to avoid at this
point. Due to this reason, we cannot prove the uniqueness of the solution to the coarse-grained equation.
However the existence of a solution to the coarse-grained equation is straightforward by the definition
of the push-forward ξ#ρt = ρ̂t of the full dynamics ρt .

A technical di�culty arising from the above remark is that it is not straightforward to construct a coupling
between the coarse-grained and the effective dynamics, which is required for proving Wasserstein
estimates in the coming sections. To deal with this we will construct a coupling (see Lemma 2.25)
between the full dynamics and a suitably lifted effective dynamics, which we now describe.

A lifted version of the effective dynamics ηt , denoted by θt , is defined such that ηt is its marginal under
ξ. We do not impose any constraint on the conditional part θ̄t,z of this measure, i.e. for any functions
f : Rk → R and g : Rd → R

∫

Rd

f (ξ(x)) g(x) dθt(x) :=

∫

Rk

f (z) dηt(z)

∫

Σz

g(y) dθ̄z,t(y) (2.44)

A reasonable choice for the conditional measure could be µ̄z , which would allow us to investigate the
relaxation of the full-dynamics ρt on the submanifolds {Σz}z∈Rk . We leave this study for future works.
Here we just construct a family of measures θt defined on Rd with ηt as the push-forward under ξ. In
the following Lemma we construct an evolution for θt which is suitable for our purpose. However it
should be noted that this is not the only possible choice.

Lemma 2.14. Let θt be the solution of

∂tθt = div
�

b̃θt

�

+ β−1D2 :
�

Ãθt

�

, (2.45)

Here the coefficients b̃ : Rd → Rd , Ã : Rd → Rd×d are given by

Ã := Dξ>G−1 (A◦ ξ) G−1Dξ ,

b̃ := Dξ>G−1
�

b ◦ ξ+ β−1D2ξ : Ã
�

.

If ξ#θ0 = η0 and {ηt}t∈R+ is a solution of (2.33), then ξ#θt = ηt . Moreover, if θ0 has bounded second
moment, then the same holds for θt for all t > 0.

Proof. The lifted dynamics (2.45) has a solution in the sense of Definition 2.1. To verify the push-forward
property, we use φ ◦ ξ with φ : Rd → R as a test function in (2.3) and calculate

d
d t

∫

Rk

φd(ξ#θt) =
d
d t

∫

Rd

φ ◦ ξdθt =

∫

Rd

�

β−1D2(φ ◦ ξ) : Ã− D(φ ◦ ξ) · b̃
�

dθt

=

∫

Rd

�

β−1
�

D2
zφ ◦ ξ

�

:
�

DξÃDξ>
︸ ︷︷ ︸

=A◦ξ

�

− (∇zφ ◦ ξ) ·
�

Dξb̃− β−1D2ξ : Ã
�

︸ ︷︷ ︸

=b◦ξ

�

dθt .

Hence, ξ#θt solves (2.33) in the sense of Definition 2.1 and by the uniqueness of solution to the effective
dynamics (see Theorem 2.11), we obtain ξ#θt = ηt . The second moment bound follows by using, after
a standard approximation argument, 1

2 |x |
2 as test function, which gives

d
d t

1
2

∫

Rd

|x |2 dθt =

∫

Rd

�

β−1 tr Ã+ x · b̃
�

dθt .
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By Assumption 2.3, we conclude that tr Ã ≤ C . Additionally with (2.42) we conclude that |b̃(x)| ≤
C(1+ |x |), which implies

d
d t

1
2

∫

Rd

|x |2 dθt ≤ C

∫

Rd

�

1+ |x |2
�

dθt ,

and the conclusion follows by using the Gronwall Lemma.

2.5 Relative entropy estimate

In this section we state and prove the first main result Theorem 1.1, on the error estimates between ρ̂
and η in relative entropy.

Theorem 2.15. Suppose V and ξ satisfy Assumptions 2.2 and 2.3, respectively and the initial datum ρ0
satisfies (2.39). Let

κH := sup
z∈Rk

sup
y1,y2∈Σz

|F(y1)− F(y2)|A(z)
dΣz
(y1, y2)

, (2.46)

where A is the effective mobility (2.35), dΣz
is the intrinsic metric (2.10), and F is the local mean force (2.19).

The norm | · |A is defined on page 12. Moreover, assume that

(H1) The conditional stationary measure µ̄z satisfies the Talagrand inequality (2.22) and the Log-Sobolev
inequality (2.23) uniformly in z with constants αTI > 0 and αLSI > 0 respectively.

(H2) There exists λH > 0 such that

λH :=






�

�A−1/2(A− DξDξ>)(DξDξ>)−1/2
�

�







L∞(Rd ) <∞. (2.47)

Then for any t ∈ [0, T]

H(ρ̂t |ηt)≤ H(ρ̂0|η0) +
1
4

�

λ2
H +

κ2
Hβ

2

αTIαLSI

�

�

H(ρ0|µ)−H(ρT |µ)
�

. (2.48)

Remark 2.16. The constant κH is bounded from above by supz∈Rk‖|∇Σz
F |I→A(z)‖L∞(Σz) and is finite

since |∇Σz
F |I→A(z) ≤ |∇F |I→A(z) <∞ by Assumptions 2.2 and 2.3 on V and ξ. It is a measure of the

interaction strength between the dynamics along the coarse-grained variables and the dynamics on the
level sets Σz . The constant αTI quantifies the scale-separation between the dynamics on the level sets
Σz and across the level sets. Note that by Remark 2.6 we have αTI ≥ αLSI and hence the statement on
the Talagrand inequality is satisfied with αTI = αLSI. However, in certain cases the scaling of αTI and
αLSI in some other parameter can be different. The constant λH is a measure of how close DξDξ> is to
being constant on the level set.

Remark 2.17 (Comparison of Theorem 2.15 with the results of Legoll and Lelièvre [LL10]). The constants
κH,λH defined in Theorem 2.15 are the multidimensional generalisations of the corresponding constants
κ[LL10] and λ[LL10] defined in [LL10, Theorem 3.1]. Let us assume 0 < m2 Idk ≤ DξDξ> ≤ M2 Idk as
in [LL10, Assumption H1]. Then

κH ≤ M






�

�∇Σz
F
�

�







L∞= Mκ[LL10],

λH ≤
M
m







�

�(A)−1
�

A− DξDξ>
��

�







L∞ =
M
m
λ[LL10].

Thus the prefactor in our relative entropy estimate (2.48) can be estimated to give the exact multidi-
mensional form of the prefactor in [LL10, Equation (31)]:

λ2
H +

κ2
Hβ

2

α2
LSI

≤
M2

m2
λ2
[LL10] +

M2κ2
[LL10]β

2

α2
LSI

≤
M2

m2

�

λ2
[LL10] +

m2κ2
[LL10]β

2

α2
LSI

�

. (2.49)
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The proof of Theorem 2.15 consists of two steps:

1. Prove an abstract estimate which connects the relative entropy of two (general) Fokker-Planck
type evolutions with a large-deviation rate functional (see Section 2.5.1).

2. Apply this estimate to the choice of coarse-grained and effective dynamics and estimate the
large-deviation rate functional appropriately (see Section 2.5.2).

2.5.1 Estimate of the relative entropy by a large deviation functional

In this section we present a general theoremwhich estimates the relative entropy between two probability
measures that solve two different Fokker-Planck equations in terms of a large-deviation rate functional.
This theorem relies on studying the evolution of the relative entropy of these two solution in time. The
precise result is due to Bogachev et. al. [BRS16], who prove these results in general conditions without
making the connection to large deviations. In subsequent sections, we will apply this theorem to the
effective and the coarse-grained dynamics in both the overdamped Langevin and the Langevin case.

Consider the following stochastic differential equation

dZt = −b(t, Zt) d t +
Æ

2β−1A(t, Zt) dW k
t , (2.50)

where b : [0, T]×Rk → Rk and A : [0, T]×Rk → Rk×k is a symmetric positive-definite matrix. We
will mention the precise assumptions on the coe�cients in Theorem 2.18 below. Let {Z i}ni=1 denote
independent and identically distributed copies of Z . It is well known that the empirical measure

νn(t) :=
1
n

n
∑

i=1

δZ i
t

(2.51)

converges as n →∞ almost surely to the unique solution of the forward Kolmogorov equation for
νt := law(Zt) (see for instance [Oel84])

∂tν=L ∗ν, L ∗ν := div(bν) + β−1D2 : Aν. (2.52)

Furthermore, it has been shown that the sequence (νn) satisfies a large-deviation principle [DG87], which
characterizes the probability of finding the empirical measure far from the limit ν, written informally as

Prob(νn ≈ ζ)∼ exp(−n I(ζ)),

in terms of a rate functional I : C([0, T];P (Rk))→ R. Assuming that the initial data Z i(0) are chosen
to be deterministic, and such that the initial empirical measure νn(0) converges narrowly to some ν0;
then I has the form, (see [DG87, FK06]),

I(ζ) :=











β

4

∫ T

0

∫

Rk

|rt |
2
A dζt d t,

if ∂tζt −L ∗ζt = −div(ζArt) with ζ|t=0 = ν0

for some h ∈ L2(0, T ; L2
A(ζt));

+∞, otherwise.

(2.53)

Here |r|2A := 〈r, Ar〉 is the A-weighted Rk inner-product and L2
A(ζt) is the closure of {∇ f : f ∈ C∞c (R

k)}
in the norm ‖F‖2

L2
A(νt )

:=
∫

|F |2A dζt . The rate functional satisfies two critical properties:

I≥ 0 and I(ζ) = 0 iff ζt solves (2.52).

Nowwe state the abstract large-deviation result, which without making the connection to large deviations
is already contained in [BRS16].
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Theorem 2.18. Let νt be the law of Zt (2.50), i.e. a solution to

∂t ν=L ∗νt = div(bν) + β−1D2 : Aν,

and let ζ ∈ C([0, T];P (Rk)) satisfy ∂tζt −L ∗ζt = −div(ζtAht) for some h ∈ L2(0, T ; L2
A(ζt)). Suppose

that

(B1) b is locally bounded and A is locally Lipschitz in z and locally strictly positive.
(B2) (1+ |z|)−2|Ai j |, (1+ |z|)−1|b|, (1+ |z|)−1|h| ∈ L1([0, T]×Rk,ν).

Then, for any t ∈ [0, T], it holds that

H(ζt |νt)≤ H(ζ0|ν0) + I(ζ), (2.54)

where I is the rate functional (2.53).

Proof. We show here the formal computation to demonstrate themain idea of the proof. This computation
requires su�cient regularity of the solution ν which is not guaranteed by the hypotheses (B1)-(B2).
To make it rigorous, some regularization arguments are required. We refer the reader to [BRS16,
Theorem 1] for a detailed proof. Note also that in [DLPS17, Theorem 2.3], the authors prove a similar
result but for the relative entropy between an arbitrary measure and the stationary solution of the
Vlasov-Fokker-Planck equation using a variational method.

Note that under the conditions on b and A, the rate functional exists [DG87, DPZ13]. We first note that
the equation for ν,ζ can be rewritten in divergence-form as

∂tνt = div(bνt) + β
−1 div(νt div A+ A∇νt)

∂tζt = div(bζt) + β
−1 div(ζt div A+ A∇ζt)− div(ζtAht)

Differentiating H(ζt |νt) with respect to time gives

∂t H(ζt |νt) = ∂t

∫

Rk

ζt log
�

ζt

νt

�

=

∫

Rk

∂tζt log
�

ζt

νt

�

+

∫

Rk

νt∂t

�

ζt

νt

�

=: I + I I .

Using integration by parts we obtain

I = −
∫

Rk

∇ log
�

ζt

νt

�

·
�

bζt + β
−1A∇ζt + β

−1 div Aζt − Aht ζt

�

= −
∫

Rk

∇ log
�

ζt

νt

�

·
�

b+ β−1A∇ log(ζt) + β
−1 div A− Aht

�

ζt

Similarly for term I I we have

I I =

∫

Rk

∂tζt −
ζt

νt
∂tνt = 0+

∫

Rk

∇
�

ζt

νt

�

·
�

b+ β−1A∇ log(νt) + β
−1 div A

�

νt

=

∫

Rk

∇ log
�

ζt

νt

�

·
�

b+ β−1A∇ log(νt) + β
−1 div A

�

ζt
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Combining the terms we end up with

∂t H(ζt |νt) =

∫

Rk

∇ log
�

ζt

νt

�

·
�

β−1A∇ log(νt)− β−1A∇ log(ζt) + Aht

�

ζt

=

∫

Rk

∇ log
�

ζt

νt

�

·
�

−β−1A∇ log
�

ζt

νt

�

+ Ah
�

ζt

= −β−1 RFA(ζt |νt) +

∫

Rk

�

∇ log
�

ζt

νt

�

· Aht

�

ζt

≤ −β−1 RFA(ζt |νt) +
Æ

RFA(ζt |νt)
r

‖ht‖
2
L2

A(ζt )
,

where RFA(·|·) is the Fisher information weighted with the matrix A, i.e.

RFA(ζ|ν) =
∫

Rk

�

�

�

�

∇ log
�

dζ
dν

�

�

�

�

�

2

A
dζ.

Integrating in time and using Young’s inequality gives

H(ζt |νt) + (1−τ)β−1

∫ t

0

RFA(ζs|νs) ds ≤ H(ζ0|ν0) +
1
τ

I(ζ) (2.55)

for every τ ∈ (0, 1]. The claimed result then follows since the Fisher information term is non-negative.

Remark 2.19. As indicated by the formal proof, the actual result (2.55) is stronger than (2.54) which is
missing the Fisher information term. However in what comes next we do not use the Fisher information
term and therefore have dropped it in the final result (2.54), by choosing τ= 1 in (2.55).

2.5.2 Estimating the rate-functional term

Corollary 2.20. Recall that ρ̂t is the coarse-grained dynamics (see Section 2.3) andηt the effective dynamics
(Section 2.4). Assume that ρ0 satisfies H(ρ0|µ)<∞. Let I be the large-deviation rate functional (2.53)
(therefore corresponding to the effective dynamics (ηt)t∈[0,T]). Then we have

H(ρ̂t |ηt)≤ H(ρ̂0|η0) + I(ρ̂) for all t ∈ [0, T]. (2.56)

Proof. We define

ht(z) := (b+ β−1 divz A)− (b̂+ β−1 divz Â) + β−1(A− Â)∇z log ρ̂t . (2.57)

This h satisfies
∂t ρ̂ −L ∗η ρ̂ = −divz(ρ̂AA−1ht),

where Lη is the generator corresponding to the effective dynamics η,

Lη f := −b · ∇z f + β−1A : D2
z f .

From the definition of the large deviation rate functional (2.53), we have

I(ρ̂) =
β

4

∫ T

0

∫

Rk

|ht |
2
(A(z))−1 dρ̂t d t. (2.58)
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The statement of this lemma is an application of Theorem 2.18 to the choice ζt ≡ ρ̂t and νt ≡ ηt . Thus
we just need to verify the two hypotheses in Theorem 2.18. By Lemma 2.12 that b is globally Lipschitz
and A is smooth and bounded, and therefore satisfy the assumption (B1). Additionally

∫ T

0

∫

Rk

�

(1+ |z|)−2|Ai j |+ (1+ |z|)−1|b|
�

dρ̂t d t ≤ C T <∞,

which verifies the first two conditions in (B2). It remains to show that
∫ T

0

∫

Rk

|ht |
1+ |z|

dρ̂t d t <∞, (2.59)

where ht = −
�

b̂+ divz Â
�

+ (b+ divz A) +
�

A− Â
�

∇z log ρ̂t . We have
∫ T

0

∫

Rk

|ht |
1+ |z|

dρ̂t d t ≤
∫ T

0

∫

Rk

(|b|+ divz A) + |b̂|+ |divz Â|+ |(A− Â)∇z log ρ̂t |
1+ |z|

dρ̂t d t. (2.60)

Similarly as above, we find
∫ T

0

∫

Rk

|b|+ |divz A|
1+ |z|

dρ̂t d t ≤ C T <∞. (2.61)

The term involving b̂ can be estimated directly. By the regularity properties of ξ and especially by the
assumption of a�nity at infinity it follows that

�

�Dξ∇V − β−1∆ξ
�

�(x)≤ C(1+ |x |)

and therefore
∫

Rk

|b̂(z)| dρ̂(z)≤
∫

Rk

∫

Σz

�

�Dξ∇V − β−1∆ξ
�

� ρt
dH d−k

Jacξ
dH k

≤ C

∫

Rk

∫

Σz

(1+ |x |) ρt
dH d−k

Jacξ
dH k ≤ C

∫

Rd

(1+ |x |)dρt <∞,

since the second moment of ρt is bounded according to Lemma 2.12.

For the estimate of div Â we use the representation in Lemma 2.4 and the regularity assumptions on ξ
to conclude
�

�divz Â(z)
�

�≤
∫

Σz

ρt

ρ̂t
|Dξ∇ logρt +∆ξ− G∇z log ρ̂t |

dH d−k

Jacξ
≤ C

∫

Σz

�

1+

�

�

�

�

∇ log
ρt

µ

�

�

�

�

+ |∇ logµ|
�

dρ̄t,z .

Integrating with respect to ρ̂ and using |∇ logµ| ≤ C(1+ |x |) leads to a bound in terms of the relative
Fisher information and the second moment, which after integrating in t are bounded.

For the remaining term in (2.60), we use the Cauchy-Schwarz inequality, and the bounds |A− Â| ≤ C ,
1
C Idk ≤ A, Â≤ C Idk and |∇ log µ̂| ≤ C(1+ |z|) to estimate (writing C for general constants that differ
from line to line)

�

∫ T

0

∫

Rk

�

�

�

A− Â
�

∇z log ρ̂t

�

�

1+ |z|
dρ̂t d t

�2

≤ C

∫ T

0

∫

Rk

|∇z log ρ̂t |
2

(1+ |z|)2
dρ̂t d t

≤ C

∫ T

0

∫

Rk

�

|∇z log ρ̂t −∇z log µ̂|2 +
|∇z log µ̂|2

(1+ |z|)2

�

dρ̂t d t

≤ C

∫ T

0

∫

Rk

�

∇z log
ρ̂t

µ̂
· A∇z log

ρ̂t

µ̂

�

dρ̂t d t +

∫ T

0

∫

Rk

(1+ |z|)2

(1+ |z|)2
dρ̂t d t

≤ C

∫ T

0

[RFA(ρ̂t |µ̂) + 1] d t.
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By Corollary 2.9, the final integral is finite. This completes the proof of this corollary.

We now cast ht in (2.57) into a more usable form.

Lemma 2.21. The function ht (defined in (2.57)) can be rewritten as

ht(z) = β
−1Eρ̄t,z

�

(A− DξDξ>)G−1Dξ∇ log
�

ρt

µ

��

− A(z)

∫

Σz

F(dρ̄t,z − dµ̄z), (2.62)

where F is the local mean force (2.19).

Proof. By similar calculations as in Remark 2.10 we obtain

divz A= −β b− A∇z log µ̂,

divz Â= −β b̂− Â∇z log ρ̂t +Eρ̄t,z
[Dξ(β∇V +∇ logρt)]. (2.63)

By substituting (2.63) into (2.57) and using the identity ∇ logµ= −β∇V we find

ht = β
−1A∇z log

�

ρ̂t

µ̂

�

− β−1Eρ̄t,z
[Dξ(∇ logρt −∇ logµ)]. (2.64)

By using Lemma 2.4 to evaluate ∇zρ̂, ∇zµ̂, we can rewrite the first term in (2.64),

β−1A∇z log
�

ρ̂t

µ̂

�

= β−1A
�∇zρ̂t

ρ̂t
−
∇zµ̂

µ̂

�

(2.65)

= β−1A

∫

Σz

div(G−1Dξ)(dρ̄t,z − dµ̄z) + β
−1A

∫

Σz

G−1Dξ
�∇ρt

ρ̂t
−
∇µ
µ̂

�

dH d−k

Jacξ
.

We can also rewrite the second term in the right hand side of (2.65) by using once more∇ logµ= −β∇V ,
∫

Σz

G−1Dξ
�∇ρt

ρ̂t
−
∇µ
µ̂

�

dH d−k

Jacξ
=

∫

Σz

G−1Dξ
�

∇ logρt dρ̄t,z −∇ logµ dµ̄z

�

=

∫

Σz

G−1Dξ
�

∇ log
ρt

µ
dρ̄t,z − β∇V

�

dρ̄t,z − dµ̄z

�

�

By substituting these terms back into (2.64), we find

ht = A

∫

Σz

�

β−1 div(G−1Dξ)− G−1Dξ∇V
�

(dρ̄t,z − dµ̄z)

+ β−1

∫

Σz

�

A(DξDξ>)−1 − Idk

�

Dξ∇ log
�

ρt

µ

�

dρ̄t,z .

The result follows by using the definition of F (2.19).

Using this reformulation of the rate functional we now estimate I(ρ̂).

Lemma 2.22. Under the same assumptions as in Theorem 2.15,

I(ρ̂)≤
1
4

�

λ2
H

β
+
κ2

Hβ

αTIαLSI

�∫ T

0

∫

Rd

�

�

�

�

∇ log
�

ρt

µ

�

�

�

�

�

2

dρt d t.
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Proof. Recall from (2.58) that to bound I(ρ̂) we need to estimate |ht |2A−1 = |A−1/2ht |2. Let us do this for
each term in (2.62). For the first term we find

�

�

�

�

β−1A−1/2Eρ̄t,z

�

(A− DξDξ>)(DξDξ>)−1Dξ∇ log
�

ρt

µ

��

�

�

�

�

2

(2.66)

≤
λ2

H

β2

∫

Σz

�

�

�

�

(DξDξ>)−1/2Dξ∇ log
�

ρt

µ

�

�

�

�

�

2

dρ̄t,z ,

where λH is defined in (2.47). For any coupling Π ∈ P (Σz ×Σz) of µ̄z and ρ̄t,z we can write
�

�

�

�

�

∫

Σz

AF(dρ̄t,z − dµ̄z)

�

�

�

�

�

2

A−1

=

�

�

�

�

�

∫

Σz×Σz

�

(A1/2F)(y1)− (A1/2F)(y2)
�

dΠ(y1, y2)

�

�

�

�

�

2

≤ κ2
H

∫

Σz×Σz

dΣz
(y1, y2)

2 dΠ(y1, y2),

where κH is defined in (2.46). By taking the infimum over all admissible couplings Π, we obtain the
Wasserstein-2 distance between ρ̄t,z and µ̄z with respect to the intrinsic metric on Σz . Under the
Assumption (H1) we find

�

�

�

�

�

∫

Σz

AF(dρ̄t,z − dµ̄z)

�

�

�

�

�

2

A−1

≤ κ2
H W2

2(ρ̄t,z , µ̄z)≤
κ2

H

αTIαLSI

∫

Σz

�

�

�

�

∇Σz
log
�

ρt

µ

�

�

�

�

�

2

dρ̄t,z . (2.67)

The final inequality follows from the definition of the conditional measure ρ̄t,z , µ̄z and by noting that
∇Σz

ρ̂ = ∇Σz
µ̂ = 0. Combining (2.66) and (2.67) and applying Young’s inequality we obtain for any

τ > 0

|ht |2A−1 ≤
λ2

H

β2
(1+τ)

∫

Σz

�

�

�

�

(DξDξ>)−1/2Dξ∇ log
�

ρt

µ

�

�

�

�

�

2

dρ̄t,z

+
κ2

H

αTIαLSI

�

1+
1
τ

�

∫

Σz

�

�

�

�

∇Σz
log
�

ρt

µ

�

�

�

�

�

2

dρ̄t,z .

Substituting into I(ρ̂) we find

I(ρ̂)≤
λ2

H

4β
(1+τ)

∫ T

0

∫

Rd

�

�

�

�

(DξDξ>)−1/2Dξ∇ log
�

ρt

µ

�

�

�

�

�

2

dρt d t

+
κ2

Hβ

4αTIαLSI

�

1+
1
τ

�

∫ T

0

∫

Rd

�

�

�

�

∇Σz
log
�

ρt

µ

�

�

�

�

�

2

dρt d t.

(2.68)

We need to combine the two terms on the right hand side. Note that for any v ∈ Rd

|Dξ>(DξDξ>)−1Dξv|2 = v>Dξ>(DξDξ>)−1DξDξ>(DξDξ>)−1Dξv

= v>Dξ>(DξDξ>)−1Dξv = |(DξDξ>)−1/2Dξv|2.

Since in addition ∇Σz
= (Id−Dξ>(DξDξ>)−1Dξ)∇, the two terms within the integrals in (2.68)

combine to |∇ log(ρt/µ)|2, which is the Fisher information for the original overdamped Langevin

dynamics. By choosing τ= κ2
Hβ

2

αTIαLSIλ
2
H
, the pre-factors to the two integrals become equal and the claimed

result follows.

Proof of Theorem 2.15. Substituting the result of Lemma 2.22 into (2.56), for any t ∈ [0, T]

H(ρ̂t |ηt)≤ H(ρ̂0|η0) +
1
4

�

λ2
H

β
+

κ2
Hβ

αTIαLSI

�∫ T

0

∫

Rd

�

�

�

�

∇ log
�

ρt

µ

�

�

�

�

�

2

dρt d t. (2.69)
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Rewriting the overdamped Langevin equation as ∂tρt =
1
β∇ ·

�

ρt∇ log ρt
µ

�

, it follows that

d
d t

H(ρt |µ) =
∫

Rd

�

log
�

ρt

µ

�

+ 1
�

1
β
∇ ·

�

ρt∇ log
ρt

µ

�

d x = −
1
β

∫

Rd

�

�

�

�

∇ log
�

ρt

µ

�

�

�

�

�

2

dρt . (2.70)

Plugging this into (2.69), for any t > 0 we arrive at

H(ρ̂t |ηt)≤ H(ρ̂0|η0) +
1
4

�

λ2
H +

κ2
Hβ

2

αTIαLSI

�

�

H(ρ0|µ)−H(ρT |µ)
�

,

which is the claimed result.

2.6 Wasserstein estimates

In this section we state and prove Theorem 1.2, which estimates in Wasserstein-2 distance the error
between the coarse-grained dynamics ρ̂t (2.27) and the effective dynamics ηt (2.33).

Theorem 2.23. Consider a coarse-graining map ξ satisfying Assumption 2.3, a potential V satisfying
Assumption 2.2 and initial datum ρ0 with finite second moment and H(ρ0|µ)<∞. Moreover, define

κW := sup
z∈Rk

sup
y1,y2∈Σz

�

�(Dξ∇V − β−1∆ξ)(y1)− (Dξ∇V − β−1∆ξ)(y2)
�

�

dΣz
(y1, y2)

, (2.71)

λW := sup
z∈Rk

sup
y1,y2∈Σz

�

�

p

DξDξ>(y1)−
p

DξDξ>(y2)
�

�

F

dΣz
(y1, y2)

, (2.72)

where |·|F is the Frobenius norm for matrices (see page 12). Assume that the conditional stationary measure
µ̄z satisfies the Talagrand inequality (2.22) and Log-Sobolev inequality (2.23) uniformly in z with constants
αTI > 0 and αLSI > 0. Then for any t ∈ [0, T]

W2
2(ρ̂t ,ηt)≤ e c̃W t

�

W2
2(ρ̂0,η0) +

4λ2
W + βκ

2
W

αTIαLSI

�

H(ρ0|µ)−H(ρt |µ)
�

�

. (2.73)

with c̃W = (1+max{4β−1‖divz A‖2
∞, 2‖∇z b‖∞}).

Remark 2.24. The constants λW,κW are indeed finite. This follows since

λW ≤









�

�

�∇Σz

Æ

DξDξ>
�

�

�

I→F










L∞(Rd )
and κW ≤







�

�∇Σz

�

Dξ∇V − β−1∆ξ
��

�







L∞(Rd ),

where the right hand side is bounded uniformly in z ∈ Rk by assumptions (C1)-(C3) on ξ, assump-
tion (V2), and since ∇Σz

= (Id−Dξ>(DξDξ>)−1Dξ)∇. Note, that the constants κW and λW have a
similar interpretation as the constants λH and κH in Theorem 2.15 (see Remark 2.16). They respectively
measure the interaction of the dynamics on and across the level sets, and the local variations of the
effective diffusion on the level sets.

In the remainder of this section we prove Theorem 2.23. The central ingredient in the proof of this
theorem is a time-dependent coupling Πt ∈ P (R2k) of the coarse-grained and the effective dynamics
(defined in the sense of Definition 2.1):

¨

∂tΠ= divz(bΠ) + β−1D2
z : AΠ,

Πt=0 = Π0,
(2.74)
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with coe�cients b : [0, T]×R2k → R2k and A : [0, T]×R2k → R2k×2k defined by

b(t, z1, z2) :=

�

b̂(t, z1)
b(z2)

�

(2.75)

A(t, z1, z2) := σσ> with σ(t, z1, z2) :=

�Æ

Â(t, z1)
p

A(z2)

�

. (2.76)

Here Π0 is the optimal coupling of the initial data and D2
z , divz are differential operators on R2k.

Let us point out that the SDE corresponding to Π is a coupling of the SDEs corresponding to the ρ̂ and
η by the same realization of a Brownian motion in Rk. Therefore any calculations with Π can also be
carried out in the SDE setting.

The existence theorem quoted after Definition 2.1 ensures that (2.74) has a solution. However proving
that the solution Π is indeed a coupling is a more subtle issue, since the coarse-grained equation does not
have a unique solution (see Remark 2.13). To get around this lack of uniqueness, we introduce a coupling
of the original dynamics and the lifted effective dynamics introduced in Lemma 2.14. The push-forward
of this new coupling will solve the equation (2.74) with marginals given by the coarse-grained dynamics
ρ̂t and effective dynamics ηt . In this way, we construct a solution to (2.74) which has the correct
marginals. The next lemma makes these ideas precise.

Lemma 2.25 (Existence of the coupling). Let Π0 be the optimal Wasserstein-2 coupling of the initial
data ρ̂0 and η0. Then there exists a family of probability measures (Πt)t∈[0,T] which solves (2.74). Further
Πt is a coupling of ρ̂t , ηt and has bounded second moments for any t ∈ [0, T].

Proof. We first define a coupling on R2d denoted by Π̃ which solves
¨

∂tΠ̃= Dx(b̃Π̃) + β−1D2
x :
�

ÃΠ̃
�

,

Π̃t=0 = Π̃0,
(2.77)

where Π̃0 is a probability measure with bounded second moment on R2d with (ξ⊗ ξ)#Π̃0 = Π0. The
variable x ∈ R2d and Dx, D2

x are differential operators on R2d . Here the coe�cients b̃ : R2d → R2d and
Ã : ×R2d → R2d×2d are defined by

b̃(x1, x2) :=

�

∇V (x1)
b̃(x2)

�

Ã(x1, x2) := σ̃σ̃> with σ̃(x1, x2) :=

�

Idd
Æ

Ã(x2)

�

.

The existence of a solution in the sense of Definition 2.1 follows from [BKRS15, Theorem 6.7.3]. Next,
we define Πt := (ξ⊗ ξ)#Π̃t . To verify that Πt solves (2.74), we use g ◦ (ξ⊗ ξ) as a test function in
the weak formulation of (2.77) (cf. Definition 2.1), where g ∈ C2

c (R
2k). Repeating the calculations

as in the proofs of Proposition 2.8 and Lemma 2.14, it then follows that Πt solves (2.74). Now, we
also note that the first marginal of Π̃t is the unique solution of the full dynamics (2.5) and the second
marginal is a solution to lifted effective dynamics of Lemma 2.14. This is easily checked by choosing
g(x1, x2) = h(x1) and g(x1, x2) = h(x2) for some h ∈ C2

c (R
d) as test function in the weak form of (2.77).

In particular, this implies that the first marginal of Πt is ξ#ρt = ρ̂t by construction and the second
marginal of Πt is ηt by Lemma 2.14, which is unique by Theorem 2.11. Hence, we have obtained the
desired coupling Πt . It is left to show that Πt has bounded second moments, which follows directly by
estimating |z|2 ≤ 2|z1|

2 + 2|z2|
2 from the statements for the marginals ρ̂t in Proposition 2.8 and ηt in

Lemma 2.14.

The proof of Theorem 2.23 relies on differentiating
∫

|z1 − z2|2Πt(dz1dz2), appropriately estimating
the resulting terms and then applying a Gronwall argument. This is the content of the next two lemmas.
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Lemma 2.26. The coupling Π constructed in Lemma 2.25 satisfies

d
d t

∫

R2k

|z1 − z2|2dΠt(z1, z2)≤ c̃W

∫

R2k

|z1 − z2|2dΠt(z1, z2) (2.78)

+ 4β−1









�

�

�

q

Â(t, ·)−
Æ

A(·)
�

�

�

F










2

L2
ρ̂t

+




b̂(t, ·)− b(·)






2

L2
ρ̂t

,

where c̃W = (1+max{4β−1‖|divz
p

A|I→F‖2
∞, 2‖|∇z b|‖∞}).

Proof. Since Πt has bounded second moment by Lemma 2.25, we obtain
∫

R2k

|z1 − z2|
2dΠt(z1, z2)≤ 2

∫

R2k

�

|z1|
2 + |z2

2 |
�

dΠt(z1, z2)<∞,

uniformly in t ∈ [0, T]. This bound allows us to approximate R2k 3 (z1, z2) 7→ |z1 − z2|
2 by smooth

functions, and therefore using the form (2.3) (with coe�cients from (2.74)) along with standard
regularisation arguments we can calculate

d
d t

∫

R2k

|z1 − z2|2 dΠt(z1, z2) = 2β−1

∫

R2k

A :
�

Idk − Idk
− Idk Idk

�

dΠt(z1, z2) (2.79)

− 2

∫

R2k

(z1 − z2) ·
�

b̂(t, z1)− b(z2)
�

dΠt(z1, z2).

The first term in the right hand side of (2.79) can be estimated via the triangle inequality

2β−1

∫

R2k

A :
�

Idk − Idk
− Idk Idk

�

dΠt(z1, z2) = 2β−1

∫

R2k

�

�

�

q

Â(t, z1)−
Æ

A(z2)
�

�

�

2

F
dΠt(z1, z2)

≤ 4β−1

∫

R2k

�
�

�

�

q

Â(t, z1)−
Æ

A(z1)
�

�

�

2

F
+
�

�

�

Æ

A(z1)−
Æ

A(z2)
�

�

�

2

F

�

dΠt(z1, z2)

≤ 4β−1









�

�

�

q

Â(t, ·)−
Æ

A(·)
�

�

�

F










2

L2
ρ̂t

+ 4β−1






�

�∇z

p
A
�

�

I→F







2

∞

∫

R2k

|z1 − z2|2 dΠt(z1, z2). (2.80)

The last inequality follows from Lemma 2.12, which states that |∇zA|I→F < +∞ and A> 0 uniformly
on Rk. Therefore,

p
A is Lipschitz with a constant bounded from above by ‖|∇z

p
A|I→F‖∞. A similar

calculation can be used to estimate the second term in the right hand side of (2.79),

−2

∫

R2k

(z1 − z2) ·
�

b̂(t, z1)− b(z2)
�

dΠt(z1, z2)

≤ 2

∫

R2k

|z1 − z2| |b̂(t, z1)− b(z1)| dΠt(z1, z2) + 2

∫

R2k

|z1 − z2| |b(z1)− b(z2)| dΠt(z1, z2)

≤







b̂(t, ·)− b(·)









2

L2
ρ̂t

+ (1+ 2‖|∇z b|‖∞)
∫

R2k

|z1 − z2|2 dΠt(z1, z2). (2.81)

The final inequality follows since b is Lipschitz with a constant bounded by ‖|∇z b|‖∞, where we
recall that ∇z b is indeed bounded by Lemma 2.12. Substituting (2.80) and (2.81) back into (2.79) we
conclude the proof.

We now estimate the normalized terms in (2.78).
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Lemma 2.27. Under the same assumptions as in Theorem 2.23










�

�

�

q

Â(t, ·)−
Æ

A(·)
�

�

�

F










2

L2
ρ̂t

≤
2λ2

W

αTI

∫

Rk

H(ρ̄t,z‖µ̄z) dρ̂t(z), (2.82)





b̂(t, ·)− b(·)






2

L2
ρ̂t

≤
2κ2

W

αTI

∫

Rk

H(ρ̄t,z‖µ̄z) dρ̂t(z). (2.83)

Proof. For symmetric strictly positive definite matrices M , N the function

(M , N) 7→
�

�

p
M −

p
N
�

�

2

F = tr
�

�p
M −

p
N
�2�

,

is jointly convex in (M , N). This follows by expanding the square and noting that tr[
p

M
p

N
>
] is concave

by Lieb’s concavity theorem [Bha97, Section IX.6.]. Since Â, A are strictly positive-definite, we can apply
a two-component Jensen’s inequality by using an admissible coupling Θ of ρ̄t,z and µ̄z ,

�

�

�

q

Â(t, z)−
Æ

A(z)
�

�

�

2

F
= tr









�

∫

Σz

DξDξ>(y1)ρ̄t,z(y1)d y1

�
1
2

−

�

∫

Σz

DξDξ>(y2)µ̄z(y2)d y2

�
1
2





2



≤
∫

Σz×Σz

tr
h
�
Æ

DξDξ>(y1)−
Æ

DξDξ>(y2)
�2i

dΘ(y1, y2)≤ λ2
W

∫

Σz×Σz

dΣz
(y1, y2)

2 dΘ(y1, y2),

where λW is defined in (2.72). Here dΣz
is the intrinsic distance on the level set Σz defined in (2.10).

Since by assumption µ̄z satisfies the Talagrand inequality with constant αTI, we find










q

Â(t, ·)−
Æ

A(·)









2

L2
ρ̂t

≤ λ2
W

∫

Rk

W2
2(ρ̄t,z , µ̄z) dρ̂t(z)≤

2λ2
W

αTI

∫

Rk

H(ρ̄t,z |µ̄z) dρ̂t(z).

This proves (2.82). The proof of (2.83) follows similarly.

Proof of Theorem 2.23. The prove of Theorem 2.23 follows from a Gronwall-type estimate applied
to (2.78) in combination with the error estimates (2.82) and (2.83)

d
d t

�

e−c̃W t

∫

R2k

|z1 − z2|2dΠt(z1, z2)

�

≤ e−c̃W t
�

4β−1









�

�

�

q

Â(t, ·)−
Æ

A(·)
�

�

�

F










2

L2
ρt

+




b̂(t, ·)− b(·)






2

L2
ρt

�

.

A straightforward applications of the estimates in Lemma 2.27 gives

W2
2(ρ̂t ,ηt)≤ e c̃W t W2

2(ρ̂0,η0) + 2

�

4β−1λ2
W + κ

2
W

αTI

�∫ t

0

∫

Rk

H(ρ̄s,z |µ̄z) dρ̂s(z) e
c̃W(t−s) ds. (2.84)

Using the Log-Sobolev assumption, the final term in (2.84) can be estimated as
∫ t

0

∫

Rk

H(ρ̄t,z |µ̄z) dρ̂s(z) e
c̃(t−s) ds ≤

∫ t

0

∫

Rk

�

1
2αLSI

∫

Σz

�

�

�

�

∇Σz
log
�

ρ̄s,z

µ̄z

�

�

�

�

�

2

dρ̄s,z

�

dρ̂s(z) e
c̃(t−s) ds

≤
e c̃ t

2αLSI

∫ t

0

∫

Rd

�

�

�

�

∇ log
�

ρs

µ

�

�

�

�

�

2

dρs ds,

where we have used ∇Σz
= (Id−Dξ>(DξDξ>)−1Dξ)∇ and the disintegration theorem to arrive at the

final inequality. By using

d
d t

H(ρt |µ) = −
1
β

∫

Rd

�

�

�

�

∇ log
�

ρt

µ

�

�

�

�

�

2

dρt ,

we obtain the claimed result (2.73).
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2.7 Estimates for general initial data

Recall from Section 2.1 that our estimates throughout this section holds under the assumption (2.39),
i.e. when the original dynamics solves

¨

∂tρ
M = β−1∆ρM + div(ρM∇V ),

ρM
t=0 = ρ

M
0 := f M

0 µ,
(2.85)

where f M
0 := 1

ZM
max{min{ f , M}, 1/M} and ZM is the normalization constant which ensures that the

initial data is a probability measure. In what follows we show that we can let M →∞ in our estimates.

The relative entropy estimate (2.48) and the Wasserstein-2 estimate (2.73) give

H(ρ̂M
t |ηt)≤ H(ρ̂M

0 |η0) +
1
4

�

λ2
H +

κ2
Hβ

2

αTIαLSI

�

�

H(ρM
0 |µ)−H(ρM

t |µ)
�

, (2.86)

W2
2(ρ̂

M
t ,ηt)≤ e c̃ t

�

W2
2(ρ̂

M
0 ,η0) +

�

4β−1λ2
W + κ

2
W

αTIαLSI

�

�

H(ρM
0 |µ)−H(ρM

t |µ)
�

�

. (2.87)

These estimates depend on the parameter M through the terms H(ρM
0 |µ), H(ρM

t |µ), H(ρ̂M
t |ηt) and

W2
2(ρ̂

M
t ,ηt). Since

ρM
0 := f M

0 µ→ f0µ= ρ0 a.e.,

by the dominated convergence theorem it follows that H(ρM
0 |µ) → H(ρ0|µ) as M →∞. Since we

assume that H(ρ̂0|η0) <∞, we have ρ̂0 = ξ#ρ0� η0 and by the regularity assumptions (C1)–(C3)
we obtain ρ̂M

0 = ξ#ρ
M
0 � η0. Hence, H(ρ̂M

0 |µ̂)→ H(ρ̂0|µ̂) and W2(ρ̂M
0 ,η0)→W2(ρ̂0,η0).

Using the convergence of ρM
0 to ρ0 we also have a convergence of the weak formulation of (2.85) to the

weak formulation of the original overdamped Langevin dynamics (2.5). Note that there exists a unique
solution to the original overdamped Langevin dynamics (2.5) under the assumptions (V1) and (V2) on
the potential V (see [BKRS15, Theorem 9.4.3]). By the tightness of the sequence (ρM

t )M∈N ∈ P (R
d)

(which follows from Theorem 2.11), the sequence ρM
t converges weakly as M →∞ for any t ∈ [0, T]

to the unique solution ρt of the original system (2.5). Since the relative entropy is lower-semicontinuous
with respect to the weak topology, we get

limsup
M→∞

�

H(ρM
0 |µ)−H(ρM

t |µ)
�

≤ H(ρ0|µ)−H(ρt |µ).

The convergence ρM
t *ρt implies that ρ̂M

t * ρ̂t , and therefore by using the lower-semicontinuity of
relative entropy and Wasserstein-2 distance with respect to the weak topology we arrive at the estimates
for the original overdamped Langevin dynamics (2.5),

H(ρ̂t |ηt)≤ H(ρ̂0|η0) +
1
4

�

λ2
H +

κ2
Hβ

2

αTIαLSI

�

�

H(ρ0|µ)−H(ρt |µ)
�

, (2.88)

W2
2(ρ̂t ,ηt)≤ e c̃ t

�

W2
2(ρ̂0,η0) +

�

4β−1λ2
W + κ

2
W

αTIαLSI

�

�

H(ρ0|µ)−H(ρt |µ)
�

�

. (2.89)

3 Langevin dynamics

Having covered the case of the overdamped Langevin equation, we now shift our attention to the
(underdamped) Langevin equation. As discussed in Section 1.3, in this case the choice of the coarse-
graining map is a more delicate issue, which we address in Section 3.2. We also introduce the coarse-
grained and effective dynamics corresponding to the Langevin case in the same section. In Section 3.4 we
derive error estimates both in relative entropy and Wasserstein-2 distance. The estimates in Section 3.4
are restricted to affine spatial coarse-graining maps, and we discuss this restriction in Remark 3.1.
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3.1 Setup of the system

Recall the Langevin equation, where for simplicity we put m= 1 from now on,
¨

dQ t = Pt d t
dPt = −∇V (Q t) d t − γPt d t +

p

2γβ−1 dW d
t ,

(3.1)

with initial datum (Q t=0, Pt=0) = (Q0, P0). The corresponding forward-Kolmogorov equation is
¨

∂tρ = −div(ρJ2d∇H) + γdivp(ρp) + γβ−1∆pρ

ρt=0 = ρ0,
(3.2)

where ρt = law(Q t , Pt), the initial datum ρ0 = law(Q0, P0). The spatial domain here is R2d with
coordinates (q, p) ∈ Rd ×Rd , and subscripts as in ∇p and ∆p indicate that the differential operators act
on the corresponding variables. We have used a slightly shorter way of writing this equation by introducing
the Hamiltonian H(q, p) = V (q) + p2/2 and the canonical 2d- symplectic matrix J2d =

� 0 Idd
− Idd 0

�

. The
potential V is assumed to satisfy (V1) and (V2) of Assumption 2.2 as in the overdamped Langevin case.
For the computations made in this section, it is su�cient to interpret (3.2) in the sense of Definition 2.1.
Condition (V1) ensures that (3.2) admits a normalizable stationary solution µ ∈ P (R2d),

µ(dq dp) := Z−1 exp

�

−β
�

p2

2
+ V (q)

��

dq dp. (3.3)

We assume that the initial datum ρ0 = law(Q0, P0) has bounded relative entropy with respect to µ i.e.

H(ρ0|µ)< +∞, (3.4)

and as a consequence we can define f0 := dρ0/dµ.

Instead of working with ρ which solves (3.2), from here on we will again work with an approximation
ρM ,α which has better properties:

¨

∂tρ
M ,α = (L Lan)∗ρM ,α +α

�

divq(ρM ,α∇V ) +∆qρ
M ,α
�

ρM ,α
�

�

t=0 = ρ
M ,α
0 := f M

0 µ.
(3.5)

Here α > 0, f M
0 := Z−1

M min{max{ f , 1/M}, M}, ZM is the normalization constant which ensures that the
initial data is a probability measures and (L Lan)∗ is the generator corresponding to (3.1), i.e. the right
hand side of (3.2). Note that by contrast to the overdamped case we not only truncate the initial datum
but also regularize the equation. In particular, adding the term ∆qρ

M ,α makes (3.5) a non-degenerate
diffusion equation. The term divq(ρM ,α∇V ) ensures that µ is still the stationary solution of (3.5). This
approximation is introduced as before to enable various calculations in the proofs. Let us emphasize,
that although equation (3.5) can be interpreted as a Fokker-Planck equation as in the previous section,
the results cannot be simply translated. However, the overall scheme and strategy is similar.

In Section 3.6 we show that the estimates we derive for the approximation (3.5) also apply to the original
system (3.2). Using the dominated convergence theorem and (3.4),

H(ρM ,α
0 |µ)< +∞.

Since (3.5) is a non-degenerate parabolic equation, by using standard results [PW12, Chapter 3], for all
t ∈ [0, T] we find

1
M ZM

µ≤ ρM ,α
t ≤

M
ZM
µ. (3.6)

To simplify notation, here onwards we will drop the superscripts M ,α in ρM ,α.
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3.2 Coarse-graining map

In the overdamped Langevin case, the coarse-graining map ξ was used to identify the coarse-grained
variables. In the Langevin case we need to similarly define a coarse-graining map on the phase space. We
make the structural assumption that the phase-space structure of the coarse-graining map is preserved,
i.e. the coarse-graining map maps the Langevin equation to a dynamics onto a new phase space, again
consisting of a ‘position’ and a ‘momentum’ variable. Moreover, we assume for simplicity that the slow
manifold for the spatial and the momentum variables is Rk. Like for the overdamped Langevin equation
a generalization to k-dimensional manifolds seems to be possible at the expense of increased technical
complexity. Hence, we work with a mapping Ξ : R2d → R2k which identifies the relevant spatial and
momentum variables (q, p) 7→ (z, v) := Ξ(q, p). Throughout this section we will use (q, p) ∈ R2d for the
original coordinates and (z, v) ∈ R2k for the coarse-grained coordinates.

Typically, the choice of the spatial coarse-grained variable is prescribed by a mapping ξ : Rd 3 q 7→ z ∈ Rk,
as in the case of the overdamped Langevin dynamics, i.e. it is possible from modeling assumptions or
physical intuition to identify the spatial reaction coordinates of the problem.

Motivated by (3.1) we define the coarse-grained momentum by

d
d t
ξ(Q t) = Dξ(Q t)Q̇ t = Dξ(Q t)Pt ,

and therefore the full coarse-graining map Ξ : R2d → R2k is

Ξ(q, p) :=
�

ξ(q)
Dξ(q)p

�

=:
�

z
v

�

. (3.7)

At the moment, this choice of the coarse-graining map Ξ is restricted to affine ξ. In view of Remark 3.1
below it is unclear if such a choice for Ξ works with non-affine ξ, as, in this case the well-posedness of
the resulting effective dynamics is not apparent (see Remarks 3.1 for details). So unless explicitly stated
otherwise, we assume that

ξ : Rd → Rk is affine with Dξ having full row rank k. (3.8)

In particular (3.8) implies that ξ(q) = Tq+τ for some τ ∈ Rk and T ∈ Rk×d of full rank. While there
are other possible choices for the coarse-graining maps on the phase space (see [LRS10, LRS12] for
detailed discussions), we restrict ourselves to (3.7) in this section. Now we make a few preliminary
remarks to fix notations.

For any (z, v) ∈ R2k, Σz,v denotes the (z, v)-level set of Ξ, i.e.

Σz,v :=
�

(q, p) ∈ R2d : Ξ(q, p) = (z, v)
	

. (3.9)

Similar to (2.10), on a level set Σz,v we can define a canonical metric dΣz,v
. The Jacobian determinant

JacΞ =
p

DξDξ> is bounded from below by a constant C−1 due to condition (3.8). Any ν ∈ P (R2d)
which is absolutely continuous with respect to the Lebesgue measure, i.e. dν(q, p) = ν(q, p)dL 2d(q, p)
for some density again denoted by ν for convenience, can be decomposed into its marginal measure
Ξ#ν=: ν̂ ∈ P (R2k) satisfying dν̂(z, v) = ν̂(z, v)dL 2k(z, v) with density

ν̂(z, v) =

∫

Σz,v

ν
dH 2d−2k

JacΞ
(3.10)

and the family of conditional measures ν(·|Σz,v) =: ν̄z,v ∈ P (Σz,v) having a 2d −2k-dimensional density
dν̄z,v(q, p) = ν̄z,v(q, p)dH 2d−2k(q, p) given by

ν̄z,v(q, p) =
ν(q, p)

JacΞ ν̂(z, v)
. (3.11)
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HereH 2d−2k is the (2d − 2k)-dimensional Hausdorff measure. For a time dependent measure νt , we
will use ν̄t,z,v to indicate the corresponding conditional measure on the level set Σz,v at time t.

Differential operators on the coarse-grained space R2k will be equipped with subscripts z, v i.e. ∇z,v ,
divz,v , ∆z,v , Dz,v . This is to separate them from differential operators on the full space R2d which will
have no subscript. For any su�ciently smooth g : R2k → R,

∇(g ◦Ξ) =
�

Dξ>∇z g ◦Ξ
Dξ>∇v g ◦Ξ

�

, D2(g ◦Ξ) =
�

DξDξ> : D2
z g ◦Ξ

DξDξ> : D2
v g ◦Ξ

�

. (3.12)

Although Dξ ∈ Rk×d is the constant matrix T ∈ Rk×d , since ξ is a�ne, we keep the notation Dξ. Here
D2

z , D2
v is the Hessian on Rk with respect to z, v respectively.

The following remark summarizes the main issue with the choice (3.7) for Ξ, when ξ is non-a�ne.

Remark 3.1 (Non-a�ne ξ). Let us consider the Langevin equation (3.1) with γ= β = 1 for simplicity and
a general ξ which has su�cient regularity and satisfies C1 Idk ≤ DξDξ> ≤ C2 Idk for some C1, C2 > 0,
and Ξ as in (3.7). We now apply the standard procedure used throughout this article to derive the
effective dynamics: we first evaluate Ξ(Q t , Pt) using Itô’s formula, and then use the closure procedure
in [Gyö86] which gives coarse-grained random variables (Ẑt , V̂t) and finally approximate these variables
by the following effective ones

dZt = Vt d t

dVt = −b̃(Zt , Vt)d t − Vt d t +
Æ

2A(Zt , Vt) dW k
t .

(3.13)

Here the coe�cients b̃ : R2k → R2k and A : R2k → R2k×2k are

b̃(z, v) := Eµ̄z,v

�

Dξ∇V − p>D2ξp
�

and A(z, v) := Eµ̄z,v

�

DξDξ>
�

, (3.14)

where (p>D2ξp)l = Σd
i, j=1pi p j∂i jξl . Note that the term p>D2ξp in b̃ vanishes when ξ is a�ne, and

in this case equals b which is the drift for the a�ne case (3.17). By assumptions on ξ, the diffusion
matrix A is elliptic and bounded, C1 Idk ≤ A(z, v)≤ C2 Idk. Therefore to show that (3.13) has in general
a solution that remains finite almost surely in finite time, a su�cient condition is that the drift b̃ satisfies
a one-sided Lipschitz condition. Let us take a closer look at b̃ on the level set Σz,v . Since DξDξ>

is bounded away from zero by assumption, |p| ≥ C |v|. If we assume that ξ is not a�ne and that
D2ξ≥ C/(1+ |q|), then there exists c such that

∫

Σz,v

p>D2ξ(q)p dµ̄z,v ≥ c|v|2.

That is, the second term in b̃ grows super-quadratically. Therefore, b̃ can not be Lipschitz and it is
possible that (3.13) admits solutions that explode in finite time. In this case, we cannot hope for control
on any moments of (3.13), and so it is not clear if such a system will allow us to prove error estimates
in either relative entropy or Wasserstein-2 distance.

3.3 Coarse-grained and Effective dynamics

Now we discuss the coarse-grained and effective dynamics corresponding to ρ which is the solution
to (3.5). The random variables (Q t , Pt) corresponding to ρt = law(Q t , Pt) satisfy

dQ t = Pt d t −α∇V (Q t) d t +
p

2α dW d
t ,

dPt = −∇V (Q t)− γPt d t +
Æ

2γβ−1 dW d
t .
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Following the same scheme as in the overdamped case, we derive the coarse-grained dynamics,






∂t ρ̂ =− divz,v

�

ρ̂J2k

�

b̂
v

��

+ divz,v

�

ρ̂

�

αb̂
γv

��

+ D2
z,v :

�

αÂ 0

0 γβ−1Â

�

ρ̂,

ρ̂t=0 = ρ̂0,

(3.15)

where the coe�cients are b̂ : [0, T]×R2k → Rk and Â : [0, T]×R2k → Rk×k are defined by

b̂(t, z, v) := Eρ̄t,z,v
[Dξ∇V ] and Â(t, z, v) := Eρ̄t,z,v

�

DξDξ>
�

.

Here J2k is the canonical 2k-dimensional symplectic matrix and ρ̄t,z,v is the conditional measure for ρ. So-
lutions to equation (3.15) are understood in the sense of Definition 2.1. As for the overdamped Langevin
equation, we can identify ρ̂t = law

�

Ξ(Q t , Pt)
�

(this follows similarly to the proof of Proposition 2.8).

Following the same principle used to construct the effective dynamics in the overdamped Langevin case,
the effective dynamics in this case is






∂tη=− divz,v

�

ηJ2k

�

b(z, v)
v

��

+ divz,v

�

η

�

αb(z, v)
γv

��

+ D2
z,v :

�

αA(z, v) 0

0 γβ−1A(z, v)

�

η,

ηt=0 = η0,
(3.16)

with coe�cients b : R2k → Rk, A : R2k → Rk×k

b(z, v) := Eµ̄z,v
[Dξ∇V ] and A := Eµ̄z,v

�

DξDξ>
�

, (3.17)

where µ̄z,v is the conditional stationary measure.

Remark 3.2. Note that in comparison with the overdamped dynamics in Section 2.3, terms that involve
second derivatives of ξ in b̂(t, z, v) and b(z, v) vanish since ξ is a�ne and the effective and coarse-grained
diffusion matrices A= Â are constant.

As before, the coarse-grained dynamics and the effective dynamics are the same in the long-time limit,
i.e. ρ̂∞ = η∞, which follows since ρt converges to µ as time goes to infinity.

Next we discuss the well-posedness and properties of the effective dynamics (3.16). As in the overdamped
Langevin case, we need the uniqueness of solution to the effective equation for the Wasserstein estimate.

Theorem 3.3. Consider a coarse-graining map ξ which satisfies (3.8). Assume:

1. The initial datum for the effective dynamics has bounded second moment.
2. The conditional stationary measure µ̄z,v satisfies a Poincaré inequality (2.21) uniformly in (z, v) ∈ R2k

with constant αPI > 0, i.e.

∀(z, v) ∈ R2k, ∀ f ∈ H1(µ̄z,v) :

∫

Σz,v

�

f −
∫

Σz,v

f dµ̄z,v

�2

dµ̄z,v ≤
1
αPI

∫

Σz,v

|∇Σz,v
f |2dµ̄z,v .

Then the coefficients of the effective dynamics satisfy

1. A= TT>, where ξ(q) = Tq+τ.
2. b ∈W 1,∞

loc (R
2k;Rk) and Db ∈ L∞(Rk×2k).

Furthermore, there exists a unique family of measures (ηt)t∈[0,T] which solves the effective dynamics (2.33)
in the sense of Definition 2.1. This family has bounded second moments, i.e.

∀t ∈ [0, T] :

∫

R2k

�

�

�

�

�

z
v

�

�

�

�

�

2

dηt <∞.
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Proof. The properties of the coe�cients follow exactly as in the proof of Lemma 2.12 (replace V by H
in this case). The existence and uniqueness for the solution to the effective dynamics follows from the
properties of the coe�cients and using [BKRS15, Theorem 6.6.2], [BKRS15, Theorem 9.4.3] respectively.
Applying a Gronwall-type estimate to the following calculation implies that ηt has bounded second
moments for any t ∈ [0, T],

d
d t

∫

R2k

1
2

�

�

�

�

�

z
v

�

�

�

�

�

2

ηt =

∫

R2k

ηt

��

v
−b

�

·
�

z
v

�

−αb · z − γ|v|2 + γβ−1A : Idk+αA : Idk

�

≤ C(α,β ,γ)

∫

R2k

�

�

�

�

�

z
v

�

�

�

�

�

2

ηt .

While the effective dynamics has a unique solution, it is not straightforward to prove the uniqueness of the
coarse-grained dynamics (see Remark 2.13 for the overdamped case). Therefore as in the overdamped
case, we will introduce a lifted effective dynamics which will be required to prove Wasserstein estimates.
As in the overdamped setting, the lifted version θt is constructed such that it has ηt as the marginal under
Ξ. The following lemma outlines the construction of this lifted dynamics and some useful properties.

Lemma 3.4. Let θt be the solution of

∂tθt = −div

�

θt J2d

�

b̃
p

��

+ div

�

θt

�

αb̃
γp

��

+ D2 :
�

αÃ 0
0 γβ−1Ã

�

θt , (3.18)

in the sense of Definition 2.1. Here the coefficients b̃ : Rd → Rd , Ã : Rd → Rd×d are given by

b̃ := Dξ>G−1 b ◦ ξ,

Ã := Dξ>G−1 (A◦ ξ) G−1Dξ.

If Ξ#θ0 = η0 and {ηt}t∈R+ is a solution of (3.16), then Ξ#θt = ηt . Moreover, if θ0 has bounded second
moment, then the same holds for θt for all t > 0.

The proof follows along the lines of Lemma 2.14. Note that the definition of b̃ in this case is simplified
as compared to overdamped case (see Lemma 2.14) since D2ξ= 0 by (3.8).

3.4 Relative entropy estimate

Let us state the main relative entropy result.

Theorem 3.5. Consider a coarse-graining map ξ that satisfies (3.8), a potential V satisfying (V1)–(V2),
and define

κ := sup
(z,v)∈R2k

sup
(q1,p1),(q2,p2)∈Σz,v

|Dξ(∇V (q1)−∇V (q2))|
dΣz,v
((q1, p1), (q2, p2))

, (3.19)

where dΣz,v
is the intrinsic metric on Σz,v . Assume that the conditional stationary measure µ̄z,v satisfies a

Talagrand inequality (2.22) uniformly in (z, v) ∈ R2k with constant αTI. Then for any t ∈ [0, T],

H(ρ̂t |ηt)≤ H(ρ̂0|η0) +
κ2 t
2αTI

�

α+ γ−1β
�

H(ρ0|µ). (3.20)
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Since ξ is a�ne and by the growth assumptions V from Assumption 2.2, the constant κ is bounded
from above by







�

�∇Σz
(Dξ∇V )

�

�







L∞(Rk) < +∞.

Proof. The proof of Theorem 3.5 is similar to the proof of Theorem 2.15 and consists of: (1) applying
Theorem 2.18 to ρ̂,η, and (2) estimating the rate functional term. Making the choice ζ≡ ρ̂ and ν≡ η
in (2.54) we have

H(ρ̂t |ηt)≤ H(ρ̂0|η0) + I(ρ̂). (3.21)

Using (2.53), the rate functional can be written as

I(ρ̂) =
1
4

∫ T

0

∫

R2k

|h̃t |2Ã(z,v)
dρ̂t d t,

where Ã : R2k → R2k×2k and h̃t ∈ L2
Ã
(ηt) satisfy

Ã(z, v) =
�

αA(z, v) 0
0 γβ−1A(z, v)

�

and h̃t(z, v) = A−1(b(t, z, v)− b̂(z, v)). (3.22)

This form of h̃t follows from the definition of the large-deviation rate functional (2.53) and by noting
that ξ is a�ne, which implies A= Â= DξDξ> with DξDξ> ∈ Rk×k (a constant matrix), and therefore

∂t ρ̂ −L ∗ρ̂ = div[ρ̂(b̂− b)] + D2 : (Â− A)ρ̂ = −div(ρ̂AA−1(b− b̂)).

Here L ∗ is the generator for the effective dynamics.

We now estimate I(ρ̂). Using (3.22) we find,

|h̃t |2Ã(z,v)
=

�

�

�

�

�

α(b(z, v)− b̂(t, z, v))
−(b(z, v)− b̂(t, z, v))

��

�

�

�

2

Ã−1(z,v)

= (α+ γ−1β)
�

�b(z, v)− b̂(t, z, v)
�

�

2

= (α+ γ−1β)

�

�

�

�

�

∫

Σz,v×Σz,v

Dξ(∇V (q1)−∇V (q2)) dΠ((q1, p1), (q2, p2))

�

�

�

�

�

2

≤
�

α+ γ−1β
�

∫

Σz,v×Σz,v

|Dξ(∇V (q1)−∇V (q2))|
2 dΠ((q1, p1), (q2, p2))

≤ κ2
�

α+ γ−1β
�

∫

Σz,v×Σz,v

dΣz,v
((q1, p1), (q2, p2))

2 dΠ((q1, p1), (q2, p2)),

where Π is a coupling of ρ̄t,z,v and µ̄z,v , and κ is defined in (3.19). Since µ̄z,v satisfies the Talagrand
inequality with a constant αTI, we bound the rate functional to arrive at

I(ρ̂)≤
κ2

4
(α+ γ−1β)

∫ T

0

∫

R2k

W2
2

�

ρ̄t,z,v , µ̄z,v

�

dρ̂t(z, v)d t

≤
κ2

2αTI
(α+ γ−1β)

∫ T

0

∫

R2k

H(ρ̄t,z,v |µ̄z,v)dρ̂t(z, v)d t ≤
κ2

2αTI
(α+ γ−1β)

∫ T

0

∫

R2d

H(ρt |µ)d t.

(3.23)

The last inequality follows from the tensorisation property of relative entropy. Since the entropy of the
original (modified) Langevin dynamics (3.5) decreases in time, i.e. H(ρt |µ)< H(ρ0|µ), the final result
follows by substituting this bound in (3.21).
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3.5 Wasserstein estimate

We now state the main Wasserstein estimate for the Langevin case.

Theorem 3.6. Consider a coarse-graining map ξ which satisfies (3.8). Assume that the conditional
stationary measure µ̄z,v satisfies the Talagrand inequality (2.22) uniformly in (z, v) ∈ R2k with constant
αTI. Then for any t ∈ [0, T],

W2
2(ρ̂t ,ηt)≤ e c̃ t

�

W2
2(ρ̂0,η0) + 2(α+ 1)

κ2 t
αTI

H(ρ0|µ)
�

, (3.24)

where c̃ = 1+max{(1− 2γ),α}+max{(3+α), (3α+ 1)}‖|∇z,v b|‖∞ and κ is defined in (3.19).

The proof of Theorem 3.6 is similar to the proof of the overdamped Langevin counterpart (Theorem 2.23).
The central ingredient, as in the overdamped case, is a coupling Θt ∈ P (R4k) of the coarse-grained and
the effective dynamics







∂tΘ =− divz,v

�

J4k

�

b

v

�

Θ

�

+ γdivz,v

�

Θ

�

αb

γv

��

+ D2
z,v : Θ

�

αA 0

0 γβ−1A

�

Θt=0 = Θ0,

(3.25)

where (z,v) = (z1, z2, v1, v2) ∈ R2k × R2k and b : [0, T] × R4k → R2k, A : [0, T] × R4k → R2k×2k are
defined by

b(t, z1, v1, z2, v2) :=

�

b̂(t, z1, v1)
b(z2, v2)

�

, (3.26)

A(t, z1, v1, z2, v2) := σσ> with σ(t, z1, z2) :=

�Æ

Â(t, z1, v1)
p

A(z2, v2)

�

. (3.27)

Here Θ0 is the optimal coupling of the initial data and D2
z,v, divz,v are differential operators on R4k.

The next result shows that the solution to (3.25) is a coupling of ρ̂t and ηt . Since the proof strategy
follows on the lines of the overdamped counterpart (see Lemma 2.25) we only outline the proof here.

Lemma 3.7 (Existence of coupling). Let Θ0 be the optimal Wasserstein-2 coupling of the initial data ρ̂0
and η0. Then there exists a family of probability measures (Θt)t∈[0,T] which solves (3.25). Further Θt is a
coupling of ρ̂t , ηt and has bounded second moments for t ∈ [0, T].

Proof. To prove this result we will first construct a coupling on R4d denoted by Θ̃, which couples the
original dynamics (3.5) and the lifted effective dynamics (3.18), and solves







∂tΘ̃ = −divq,p

�

Θ̃J4d

�

b̃

p

��

+ divq,p

�

Θ̃

�

αb̃

γp

��

+ D2
q,p : Θ̃

�

αÃ 0

0 γβ−1A

�

Θ̃t=0 = Θ̃0,

with Θ0 a probability measure with bounded second moment on R4d and (Ξ ⊗ Ξ)#Θ̃0 = Θ0. Here
the variables q,p are elements of R2d and the divq,p and D2

q,p are differential operators on R4d . The

coe�cients b̃ : R2d → R2d and Ã : R2d → R2d×2d are given by

b̃(q1, q2, p1, p2) :=

�

∇V (q1)
b̃(q2)

�

Ã(q1, q2, p1, p2) := σ̃σ̃T with σ̃ :=

�

Idd
Æ

Ã(q2)

�

.

37



We define Θt := (Ξ⊗Ξ)#Θ̃t . By using appropriate test functions, it follows that Θt solves (3.25). Note
that the first marginal of Θ̃t is the full dynamics (3.5) and the second marginal is the lifted effective
dynamics (3.18). This is easily checked by repeating the arguments in the proof of Lemma 2.25. In
particular, this implies that the first marginal of Θt is Ξ#ρt = ρ̂t and the second marginal is the effective
dynamics ηt .

Now we prove a lemma required for the Wasserstein estimate.

Lemma 3.8. The coupling Θ solving (3.25) satisfies

d
d t

∫

R4k

�

�

�

�

�

z1
v1

�

−
�

z2
v2

�

�

�

�

�

2

dΘt ≤ (α+ 1)




b̂(t, ·, ·)− b(·, ·)






2

L2
ρ̂t

+ c̃

∫

R4k

�

�

�

�

�

z1
v1

�

−
�

z2
v2

�

�

�

�

�

2

dΘt , (3.28)

where c̃ = 1+max{(1− 2γ),α}+max{(3+α), (3α+ 1)}‖∇z,v b‖∞.

Proof. We have

d
d t

∫

R4k

�

�

�

�

�

z1
v1

�

−
�

z2
v2

�

�

�

�

�

2

dΘt = 2

∫

R4k







z1 − z2
−(z1 − z2)

v1 − v2
−(v1 − v2)






· J4k







b̂(t, z1, v1)
b(z2, v2)

v1
v2






dΘt

− 2

∫

R4k

�

γ

�

v1 − v2
−(v1 − v2)

�

·
�

v1
v2

�

+α
�

z1 − z2
−(z1 − z2)

�

·
�

b̂(t, z1, v1)
b(z2, v2)

��

dΘt

=2

∫

R4k

�

(z1 − z2) · (v1 − v2) + [(v1 − v2) +α(z1 − z2)] · (b(z2, v2)− b̂(t, z1, v1))− γ|v1 − v2|2d
�

Θt .

Here the diffusion term does not contribute since A= Â is a constant matrix. By adding and subtracting
b(z1, v1) and using Young’s inequality we find

d
d t

∫

R4k

�

�

�

�

�

z1
v1

�

−
�

z2
v2

�

�

�

�

�

2

dΘt ≤
∫

R4k

��

�

�

�

�

z1
v1

�

−
�

z2
v2

�

�

�

�

�

2

+ (1− 2γ)|v1 − v2|2 +α|z1 − z2|2
�

dΘt

+ (1+α)‖b̂− b‖2
L2
ρ̂t

+ 2‖∇z,v b‖∞

∫

R4k

(|v1 − v2|+α|z1 − z2|)(|z1 − z2|+ |v1 − v2|)dΘt

≤(1+max{(1− 2γ),α})
∫

R4k

�

�

�

�

�

z1
v1

�

−
�

z2
v2

�

�

�

�

�

2

dΘt + (1+α)‖b̂− b‖2
L2
ρ̂t

+ ‖∇z,v b‖∞

∫

R4k

(3+α)|v1 − v2|2 + (3α+ 1)|z1 − z2|2 dΘt

≤ c̃

∫

R4k

�

�

�

�

�

z1
v1

�

−
�

z2
v2

�

�

�

�

�

2

dΘt + (1+α)‖b̂− b‖2
L2
ρ̂t

,

where c̃ := 1+max{(1− 2γ),α}+max{(3+α), (3α+ 1)}‖∇z,v b‖∞.

Proof of Theorem 3.6. Under the assumption that µ̄z,v satisfies the Talagrand inequality, and repeating
the calculations as in Lemma 2.27 we find





b̂(t, ·, ·)− b(·, ·)






2

L2
ρ̂t

≤
2κ2

αTI

∫

R2k

H(ρ̄t,z,v |µ̄z,v)dρ̂t(z, v). (3.29)

We conclude the proof by substituting (3.29) into (3.28), applying a Gronwall argument and bounding
the remaining integrated relative entropy term as in the proof of Theorem 3.5.
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3.6 Passing to the limit in the regularization of the initial data

Recall from Section 3.1 that our estimates in this section are for the approximation
¨

∂tρ
M ,α = (L Lan)∗ρM ,α +α

�

divq(ρM ,α∇V ) +∆qρ
M ,α
�

,

ρM ,α
�

�

t=0 = ρ
M ,α
0 := f M

0 µ,
(3.30)

of the Langevin dynamics (3.2). Here α > 0, f M
0 := Z−1

M max{min{ f0, M}, 1/M}, ZM is the normalization
constant which ensures that the initial datum is a probability measure and L Lan is the generator
corresponding to the Langevin equation (3.2),

L Lan f := J2d∇H · ∇ f − γp · ∇p f + γβ−1∆p f .

Let us recall the relative entropy estimate (3.20) and the Wasserstein estimate (3.24),

H(ρ̂M ,α
t |ηαt )≤ H(ρ̂M ,α

0 |η0) +
κ2 t
2αTI

�

α+ γ−1β
�

H(ρM ,α
0 |µ), (3.31)

W2
2(ρ̂

M ,α
t ,ηαt )≤ e c̃ t

�

W2
2(ρ̂

M ,α
0 ,η0) + 2(α+ 1)

κ2 t
αTI

H(ρM ,α
0 |µ)

�

. (3.32)

Note that we have used the tensorization property of relative entropy to simplify (3.24) to arrive at the
Wasserstein estimate above. We pass to the limit in these estimates in two steps: first α→ 0 and second
M →∞.

As M →∞, ZM f M
0 → f0 almost everywhere, and since 0 ≤ ZM f M

0 µ ≤ max{ f0, 1/M}µ, it follows by
the dominated convergence theorem that ZM f0µ→ ρ0 in L1, and consequently that ZM → 1. Again
by the dominated convergence theorem we then find that H(ρM ,α

0 |µ) → H(ρ0|µ) as M → ∞. As
H(ρ̂M ,α

0 |η0)<∞, we have ρ̂0 = ξ#ρ0� η0 and since ξ is a�ne, ρ̂M
0 = ξ#ρ

M
0 � η0. Hence, we obtain

H(ρ̂M ,α
0 |µ̂)→ H(ρ̂0|µ̂) and W2(ρ̂

M ,α
0 ,η0)→W2(ρ̂0,η0).

Using the convergence of ρM ,α
0 to ρ0 we also have the convergence of the weak formulation of (3.30) to

the weak formulation of the Langevin dynamics (3.2). Note that there exists a unique solution to the
original Langevin dynamics (3.2) under the assumptions (V1)-(V2) (see [Vil09, Theorem 7]). Passing
to the limit, first as α→ 0 and then M →∞ we have that the sequence ρM ,α

t ∈ P (R2d) converges
weakly to ρt where ρt is the solution for the Langevin equation (3.2). Using the lower-semicontinuity
of relative entropy with respect to the weak topology and since ρ̂M ,α

t * ρ̂t , for the original Langevin
system we have the following estimates

H(ρ̂t |ηt)≤ H(ρ̂0|η0) +
t κ2

αTI

�

γ−1β
�

H(ρ0|µ),

W2
2(ρ̂t ,ηt)≤ e c̃ t

�

W2
2(ρ̂0,η0) +

2 t κ2

αTI
H(ρ0|µ)

�

.
(3.33)

4 Estimates under a scale separation assumption

4.1 Scale-separated potentials

Let us first illustrate the dependence of the constant in the main results on the Fokker-Planck equation
in the case of a potential satisfying certain scale-separation assumptions. In the first assumption below,
we consider potentials consisting of a fast and a slow part, where the scale separation is encoded via
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a parameter ε. For simplicity, we will assume that the fast part of the potential is convex on the level
set Σz for all z ∈ Rk, which is a su�cient condition to deduce functional inequalities (Log-Sobolev and
Talagrand) with good scaling behaviour in ε.

Assumption 4.1 (Scale-separated potential). A potential V ε satisfying Assumption 2.2 is called scale-
separated, if there exists a coarse graining map ξ : Rd → Rk satisfying Assumption 2.3 such that

V ε(q) =
1
ε

V0(q) + V1(q) and Dξ(q)∇V0(q) = 0 ∀q ∈ Rd . (4.1)

Moreover, V0(q) is uniformly strictly convex on the level sets Σz = {ξ= z}, i.e. there exists δ > 0 such
that

∀z ∈ Rk ∀q ∈ Σz ∀u ∈ ker Dξ(q) : uT D2V0(q̄(z))u≥ δ|u|2. (4.2)

Under the above assumption, the results of [OV00] imply a good scaling behaviour of the Talagrand and
Log-Sobolev constant

Lemma 4.2. Under Assumption 4.1, the Talagrand and the Log-Sobolev constants satisfy for some constant
c > 0 the estimate

αTI ≥ αLSI ≥
δ

ε
.

We now provide estimates on the additional constants κ and λ in the relative entropy and Wasserstein
estimate.

Lemma 4.3. Suppose V ε satisfies the scale separation Assumption 4.1, then there is a constant C indepen-
dent of ε such that κH,λH,κW,λW ≤ C as defined in (2.46), (2.47), (2.71) and (2.72) respectively.

Proof. By the definition of the local mean force F in (2.19) and assumption (4.1) follows that F is
independent of V0 and hence ε. Then the estimate follows from κH ≤ supz∈Rk |∇Σz

F | (see Remark 2.16)
and the regularity assumptions on V1 and ξ implied by Assumptions 2.2 and 2.3.

The bound on λH follows by noting that DξDξ> ≥ c Idk and ‖Dξ‖L∞(Rd ) ≤ C from Assumption 2.3 and

hence λH ≤ 2 C2
p

c . The arguments for the estimates of κW and λW follow along the same lines.

Since all the constants inside of the main results Theorem 2.15 and 2.23 are bounded, we can conclude
the following result. Suppose V ε satisfies the scale-separation Assumption 4.1, then there exists a
constant C independent of ε such that the coarse-grained (2.27) and the effective dynamics (2.33)
corresponding to the overdamped Langevin dynamics (2.5) satisfy

H(ρ̂t |ηt)≤ H(ρ̂0|η0) + C
�

1+ ε2
�

H(ρ0|µ). (4.3)

and
W2

2(ρ̂t ,ηt)≤ C W2
2(ρ̂0,η0) + Cε2 H(ρ0|µ). (4.4)

Hence, in the setting of generic scale separated potentials, only the Wasserstein estimate provides an
error estimate, which vanishes for ε→ 0 provided the initial data of the effective dynamics matches the
pushforward of the initial data ρ0. To illustrate the results on the Kramers equation, we further have to
restrict the coarse-graining map to be a�ne.
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4.2 Coarse-graining along coordinates

A combination of Assumption 4.1 with the additional assumption that ξ is a�ne, accounts to assuming
that the potential V ε is scale separated along coordinates, i.e.

V ε(q) =
1
ε

V0(q1, . . . , qd−k) + V1(q), (4.5)

with V0 : Rd−k → R being uniformly convex.

Before proceeding with the main results on the Kramers equation, we note, that in this case λH = λW = 0
and also the relative entropy estimate (4.3) takes the same form as (4.4), that is for some C > 0
independent of ε for the overdamped Langevin equation, it holds

H(ρ̂t |ηt)≤ H(ρ̂0|η0) + Cε2 H(ρ0|µ). (4.6)

Hence, in the case of coordinate projections, the relative entropy estimate has the same structure as the
Wasserstein estimate (4.4) for generic scale separated potentials.

The constant κ defined in (3.19) only depends on the Hessian of V1, which is assumed to be bounded
by Assumption 2.2. Hence, there exists a C > 0 independent of ε, such that the coarse-grained
dynamics (3.15) and effective dynamics (3.16) for the Kramers equation (3.2) satisfy

H(ρ̂t |ηt)≤ H(ρ̂t |ηt) + CεT H(ρ0|µ). (4.7)

5 Discussion

A quantitative estimate for the coarse-graining error between the coarse-grained and effective dynamics
in the relative entropy sense for the overdamped Langevin was obtained before by Legoll and Lelièvre
[LL10]. In this work, we generalise the results in [LL10] in four ways: (1) we consider both the
overdamped Langevin and the full Langevin dynamics, (2) we also measure the error in the Wasserstein
distance, (3) we extend the estimate to vectorial coarse-graining maps ξ and (4) we prove global
well-posedness for both the coarse-grained and the effective dynamics.

We now comment further on these and on open issues.

Large-deviation rate functional and quantification of coarse-graining error in the relative entropy sense.
The main challenge that both [LL10] and this work encounter is to quantify the distance between
two density profiles that are solutions of the coarse-grained and the effective dynamics. In [LL10] the
authors achieved this goal using the relationship between the relative entropy and the Fisher information
and functional inequalities. As we have shown in Theorem 2.18 and Lemma 2.22 (see also [DLPS17])
similar relations and functional inequalities can be obtained via the large-deviation rate functional. It is
the use of the large-deviation rate functional that allows us to generalise estimates in the overdamped
Langevin to the full Langevin dynamics since a large-deviation principle is available for both dynamics.
In fact, since a large-deviation principle holds true for many other stochastic processes [FK06], we
expect that our technique can be extended to more general scenarios. For instance preliminary results
along this line for Markov chains on discrete states spaces are contained in [Hil17].

The coupling method and quantification of coarse-graining error in the Wasserstein distance. In this work,
we also measure the error in the Wasserstein-2 distance, which is a weaker measure of the error than
the relative entropy one. However, the latter involves the large-deviation rate functional that requires
information at the microscopic levels and sometimes is non-trivial to obtain. On the other hand, any
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coupling between two probability measures will provide an upper bound for the Wasserstein distance
between them. Suppose that µ and ν solve

∂tµ= div(b1µ) + D2 : a1µ and ∂tν= div(b2ν) + D2 : a2ν.

Then any γ that solves ∂tγ= div(bγ) + D2 : aγ, with

b(x , y) =
�

b1(x)
b2(y)

�

, a(x , y) =
�

a1(x) c(x , y)
c(x , y)T a2(y)

�

where c is a matrix such that a(x , y) is non-negative definite, will be a coupling between µt and νt .
The basic coupling that is used in this work corresponds to c(x , y) =

p

a1(x)a2(y). This coupling often
gives the optimal dissipation when applied to the Wasserstein-2 distance [CL89]. We expect that the
coupling method (with different choice of coupling) can be applied to obtain estimates in difference
distances such as the total variation and the Wasserstein-1 [CL89, Ebe15].

Vectorial coarse-graining maps. The third generalisation of this work is that the coarse-graining map ξ
can be vectorial. For instance, the overdamped Langevin dynamics in Rd (d > 1) itself can be derived
as a vectorial coarse-grained model of the the full Langevin in R2d , see the point below. Thus our work
is applicable to a larger class of problems.

Global well-posedness of the coarse-grained and the effective dynamics. In this work (also in [DLPS17]) we
consider a coarse-graining process is successful if the coarse-grained and the effective dynamics are
globally well-posed. This criteria imposes conditions on the data and the coarse-graining map. That is
why we have required certain additional growth conditions on the potential V , the coarse-graining map
ξ and assumed that ξ is a�ne in the Langevin case.

Non-affine and manifold-valued coarse-graining maps. In Section 3, we have to restrict ourselves to a�ne
coarse-graining maps ξ. The reason, as explained in Remark 3.1, is that the vector field driving the
effective dynamics obtained from a non-a�ne map ξ seems to have quadratic growth at infinity. Hence,
we can not rule out explosion in finite time for the corresponding SDE and the well-posedness of the
Fokker-Planck equation can not be ensured. For this reason the coarse-graining map (ξ(q), Dξ(q)p)>

might need a revision and further investigation. In [LRS10, LRS12] the authors introduce a different
coarse-grained momentum; however this does not resolve the explosion issues. It would be interesting
to understand what is a good choice for the coarse-grained momentum when ξ is non-a�ne. Another
interesting possibility for generalisation is to consider manifold-valued coarse-graining maps, that
is ξ : Rd → M k, whereM k is a smooth k-dimensional manifold. For this, this work is a first step
considering Rk as tangent space onM k. The condition on ξ to be a�ne for |q| →∞ can in the manifold
setting be understood as a compatibility condition between different charts. Such manifold-valued
coarse-graining maps appear in many practical applications. For instance in the case of the classical
3-atom model with a soft angle and stiff bonds [LL10, Section 4.2] the natural coarse-graining map is
the angle variable, i.e. ξ : R3d → S1.

Acknowledgements The authors would like to thank Frédéric Legoll and Tony Lelièvre for insightful
discussions regarding the effective dynamics.

A Properties of the coarse-graining map

Lemma A.1 (ξ is a�ne at infinity). Assume that ξ satisfies (C1)-(C3). There exists T ∈ Rk×d and Cξ > 0
such that for all q ∈ Rd

|Dξ(q)−T| ≤
Cξ

1+ |q|
.
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Proof. For x , y ∈ Rd with |y| ≥ |x |, we define γ to be the curve consisting of the line segment
[x , |y|x/|x |] and the spherical arc connecting |y|x/|x | to y which we denote by Þ(|y|x/|x |, y). Us-
ing (C3), we obtain the bound

|Dξ(x)− Dξ(y)| ≤

�

�

�

�

�

∫

γ

D2ξ(q) dγ

�

�

�

�

�

≤ C

∫ |y|

|x |

ds
1+ s2

+ C

∫

Þ(x |y|/|x |,y)

ds
1+ |s|2

≤ C
�

|arctan |x | − arctan |y||+
π|y|

1+ |y|2

�

.

Interchanging the roles of x and y in the calculation above, for any x , y ∈ Rd

|Dξ(x)− Dξ(y)| ≤ C
�

|arctan |x | − arctan |y||+
π

1+max{|x |, |y|}

�

, (A.1)

where we have used min{a/(1+a2), b/(1+b2)} ≤ (1+
p

2)/(1+max{a, b}) for any a, b > 0. Since Dξ is
bounded, for any sequence (yn) with |yn| →∞ there exists a subsequence (ynk

) such that Dξ(ynk
)→ T

where T may depend on the subsequence (ynk
). Applying (A.1) we conclude

|Dξ(x)−T| ≤ |Dξ(x)− Dξ(ynk
)|+ |Dξ(ynk

)−T|

≤ C

�

|arctan |x | − arctan |ynk
||+

π

1+max{|x |, |ynk
|}

�

+ |Dξ(ynk
)−T|

and thus in the limit k→∞

|Dξ(x)−T| ≤ C
�π

2
− arctan |x |

�

= C arctan
�

1
|x |

�

≤ C min
§

1
|x |

,
π

2

ª

. (A.2)

Hence, whenever for a sequence (xn) with |xn| →∞ we have subsequence with Dξ(xnk
)→ T∗, then by

the first inequality in (A.2) it holds T= T∗, which implies uniqueness of the limit.

Proof of Lemma 2.4. By using (2.16) and the co-area formula, for g ∈W 1,∞(Rk;R) we have
∫

Rk

ψξ(z)∇z g(z) dz =

∫

Rk

dz

∫

Σz

ψ(∇z g) ◦ ξ
dH d−k

Jacξ
=

∫

Rd

ψ(q)(∇z g ◦ ξ)(q) dq. (A.3)

Since Dξ has rank k we can invert DξDξ>, giving the projected gradient

∇z g ◦ ξ= (DξDξ>)−1 DξD(g ◦ ξ).

Substituting into (A.3) we find

−
∫

Rk

ψξ(z)∇z g(z) dz = −
∫

Rd

ψ(q)∇z g ◦ ξ(q) dq

= −
∫

Rd

ψ(q) (DξDξ>)−1(q)Dξ(q)D(g ◦ ξ)(q) dq

=

∫

Rd

g ◦ ξ(q) div
�

ψ
�

DξDξ>
�−1

Dξ
�

(q) dq

=

∫

Rk

g(z) dz

∫

Σz

div
�

ψ
�

DξDξ>
�−1

Dξ
�dH d−k

Jacξ
.

This proves (2.17). Equation (2.18) follows by applying (2.17) columnwise.
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B Regularity of effective coefficients

Proof of Lemma 2.12. Wewill first prove that |∇z bi(z)| ≤ C for i ∈ {1, . . . , k}. For the ease of calculations
we write

bi(z) =

∫

Σz

fidµ̄z =
1
µ̂(z)

∫

Σz

fiµ
dH d−k

Jacξ
=:
ψξ(z)
µ̂(z)

, where fi := Dξi∇V − β−1∆ξi ,

where we have used the explicit form of µ̄z in (2.13). By the chain rule follows

∇z bi =
∇zψ

ξ(z)
µ̂(z)

− bi(z)∇z log µ̂(z). (B.1)

Using (2.20), the second term in the right hand side of (B.1) can be written as

−bi(z)∇z log µ̂(z) = bi(z)

∫

Σz

�

βDξ†>∇V − div(Dξ†>)
�

dµ̄z , (B.2)

where µ(q) = Z−1 exp(−βV (q)) and Dξ† := Dξ>(DξDξ>)−> is the Moore-Penrose pseudo-inverse of
Dξ. Applying Lemma 2.4 to the first term in the right hand side of (B.1) we obtain

∇zψ
ξ(z)

µ̂(z)
=

1
µ̂(z)

∫

Σz

div(Dξ†>µ fi)
dH d−k

Jacξ
(B.3)

=

∫

Σz

�

Dξ†>(∇ fi − β fi∇V ) + fi div(Dξ†>)
�

dµ̄z .

Substituting (B.2) and (B.3) into (B.1) we can write

∇z bi(z) =

∫

Σz

�

Dξ†>∇ fi + (bi ◦ ξ− fi)
�

βDξ†>∇V − div(Dξ†>)
��

dµ̄z . (B.4)

Regarding the first term in (B.4),

∇ fi = D2ξi∇V − D2V∇ξi − β−1∇D2ξi , (B.5)

assumptions (C1)-(C3) on ξ and (V1)-(V2) on V ensure that |∇ fi |, |Dξ†| ≤ C . The pseudo-inverse X † of
a matrix X ∈ Rk×d with rank k and depending on a scalar parameter x satisfies

∂x X † = −X †∂x X X † + (Idd −X †X )∂x X>X †>X †, (B.6)

and therefore |div(Dξ†>)| < C by the assumptions on ξ. Using these observations in (B.4) it follows
that

|∇z bi(z)| ≤ C + β

�

�

�

�

�

∫

Σz

[bi ◦ ξ− fi]Dξ
†>∇V dµ̄z

�

�

�

�

�

+ C

∫

Σz

|bi ◦ ξ− fi | dµ̄z . (B.7)

We have assumed that the stationary conditional measure µ̄z satisfies a Poincaré inequality with con-
stant αPI, uniformly in z. Using the definition of bi , the final term on the right hand side of (B.7) can be
estimated as

∫

Σz

|bi ◦ ξ− fi |dµ̄z ≤
q

Varµ̄z
( fi)≤

√

√

√
1
αPI

∫

Σz

|∇Σz
fi |2dµ̄z ≤ C , (B.8)
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where Varρ(g) :=
∫ �

g −
∫

g dρ
�2

dρ is the variance. The last estimate in (B.8) follows from |∇Σz
fi | ≤

|∇ fi | ≤ C . Using the notation v` := (Dξ†>∇V )` the middle term in (B.7) can be estimated as
�

�

�

�

�

∫

Σz

[bi ◦ ξ− fi]v` dµ̄z

�

�

�

�

�

=

�

�

�

�

�

∫

Σz

�

fi −
∫

Σz

fi dµ̄z

��

v` −
∫

Σz

v` dµ̄z

�

dµ̄z

�

�

�

�

�

≤
q

Varµ̄z
( fi)Varµ̄z

(v`)≤ C ,

where we have used (B.8) and a similar argument applied to v` noting that

|∂i v`|=

�

�

�

�

�

d
∑

j=1

∂i(Dξ
†
j`∂ jV )

�

�

�

�

�

=

�

�

�

�

�

d
∑

j=1

�

∂i Dξ
†
j`∂ jV + Dξ†

j`∂i jV
�

�

�

�

�

�

≤ C .

We have now shown that |∇z b(z)| ≤ C , and hence there exists a constant C > 0 such that |b(z)| ≤
C(1 + |z|) i.e. b has sub-linear growth at infinity. As a result b ∈ W 1,∞

loc (R
k). Since Dξ is bounded,

|A(z)| ≤ C by definition and following the same calculations as used to show bounds on ∇z b it can be
shown that |∇zA(z)| ≤ C; combining these observations we have A ∈ W 1,∞(Rk). Finally, since there
exists a constant C > 0 such that C−1 Idk ≤ DξDξ> ≤ C Idk, A satisfies similar bounds as well.
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