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Interacting particle systems:
Mean-field limits and applications to machine learning

July 19, 2019



Motivation: Graph approximation of data sets

Ingredients:
� n points {xi}ni=1 sampled from Ω ⊂ Rd according to µ ∈M(Ω)

⇒ empirical measure µn = 1
n

∑n
i=1 δxi

� a symmetric weight function η : G→ [0,∞) with G = Ω× Ω \ {x = y}
⇒ (µn, η) defines a weighted graph
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Goal: Evolution equations on graphs

For ρ ∈ P(Ω) and symmetric K ∈ C(Ω× Ω) define the interaction energy

E(ρ) =
1

2

∫∫
Ω×Ω

K(x, y) dρ(x) dρ(y)

Goal: Define (gradient flow) dynamic for energy E on weighted graph (µ, η).

Subgoals:

� Dynamic should be stable under graph limit n→∞ such that µn ∗
⇀ µ

(µn, η) becomes a continuous graph (µ, η)

� Dynamic should be consistent/stable for local limit:
For µ = Leb(Rd) and ηδ(x, y) = δ−dη

(
x−y
δ

)
, the limit δ → 0 shall be the

interaction/aggregation equation

∂tρt = ∇ · (ρt∇K ∗ ρt) (IE)

(IE) is Wasserstein gradient flow for E ⇒ find suitable nonlocal metric T on (µ, η).

⇒ Gradient flow of E wrt T is nonlocal interaction equation on weighted graph (µ, η)

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 2 (18)



Goal: Evolution equations on graphs

For ρ ∈ P(Ω) and symmetric K ∈ C(Ω× Ω) define the interaction energy

E(ρ) =
1

2

∫∫
Ω×Ω

K(x, y) dρ(x) dρ(y)

Goal: Define (gradient flow) dynamic for energy E on weighted graph (µ, η).

Subgoals:

� Dynamic should be stable under graph limit n→∞ such that µn ∗
⇀ µ

(µn, η) becomes a continuous graph (µ, η)

� Dynamic should be consistent/stable for local limit:
For µ = Leb(Rd) and ηδ(x, y) = δ−dη

(
x−y
δ

)
, the limit δ → 0 shall be the

interaction/aggregation equation

∂tρt = ∇ · (ρt∇K ∗ ρt) (IE)

(IE) is Wasserstein gradient flow for E ⇒ find suitable nonlocal metric T on (µ, η).

⇒ Gradient flow of E wrt T is nonlocal interaction equation on weighted graph (µ, η)

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 2 (18)



Goal: Evolution equations on graphs

For ρ ∈ P(Ω) and symmetric K ∈ C(Ω× Ω) define the interaction energy

E(ρ) =
1

2

∫∫
Ω×Ω

K(x, y) dρ(x) dρ(y)

Goal: Define (gradient flow) dynamic for energy E on weighted graph (µ, η).

Subgoals:

� Dynamic should be stable under graph limit n→∞ such that µn ∗
⇀ µ

(µn, η) becomes a continuous graph (µ, η)

� Dynamic should be consistent/stable for local limit:
For µ = Leb(Rd) and ηδ(x, y) = δ−dη

(
x−y
δ

)
, the limit δ → 0 shall be the

interaction/aggregation equation

∂tρt = ∇ · (ρt∇K ∗ ρt) (IE)

(IE) is Wasserstein gradient flow for E ⇒ find suitable nonlocal metric T on (µ, η).

⇒ Gradient flow of E wrt T is nonlocal interaction equation on weighted graph (µ, η)

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 2 (18)



Inspiration: The numerical upwind scheme

What is the nonlocal analog of the continuity equation:

∂tρt +∇ · jt = 0

jt(x) = ρt(x)vt(x) ?

Fluxes jt are defined on edges (x, y) ∈ G and the divergence is nonlocal

∂tρt(x) + (∇ · jt)(x) = ∂tρt +

∫
Ω

jt(x, y) dy = 0 .

Given a nonlocal vectorfield vt : G→ R: velocity of a particle going from x to y.

What is the flux jt induced by the vectorfield vt given ρt?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic.

So far1 a general mean multiplies the velocity: jt(x, y) = θ(ρt(x), ρt(y))vt(x, y)

Choice is reasonable for diffusive equations, but not suitable for first order ones.

Upwind flux: Set (a)+ = max{0, a} and (a)− = max{0,−a} and define

jt(x, y) =
(
ρ(x)v(x, y)+ − ρ(y)v(x, y)−

)
η(x, y)µ(y) .

1[Maas ’11], [Mielke ’11], [Chow, Huang, Li, Zhou ’12], [Erbar ’14]
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Upwind continuity equation and upwind transportation metric (nonrigorous)

If {ρt}t≥0 has a density ρt � µ seek for solutions to

∂tρt(x) +

∫
Ω

(
ρt(x)vt(x, y)+ − ρt(y)vt(x, y)−

)
η(x, y) dµ(y) = 0 . CE

Tentative definition of upwind transportation metric via Benamou-Brenier

inf
(ρ,v)∈CE(ρ0,ρ1)

{∫ 1

0

∫∫
G

(
|vt(x, y)+|2ρt(x) + |vt(x, y)−|2ρt(y)

)
η(x, y) dµ(x) dµ(y) dt

}
Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE):
vt = −∇ δE

δρ
= −∇K ∗ ρ with ∇V (x, y) = V (y)− V (x) gives

∂tρt(x) +

∫
Ω

(
ρt(x)∇(K ∗ ρ)(x, y)− − ρt(y)∇(K ∗ ρ)(x, y)+

)
η(x, y) dµ(y) = 0,

Today:

� Variational framework for (NLIE) based on upwind transportation metric

� Stability under graph limit n→∞ such that µn ∗
⇀ µ

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 4 (18)



Upwind continuity equation and upwind transportation metric (nonrigorous)

If {ρt}t≥0 has a density ρt � µ seek for solutions to

∂tρt(x) +

∫
Ω

(
ρt(x)vt(x, y)+ − ρt(y)vt(x, y)−

)
η(x, y) dµ(y) = 0 . CE

Tentative definition of upwind transportation metric via Benamou-Brenier

inf
(ρ,v)∈CE(ρ0,ρ1)

{∫ 1

0

∫∫
G

(
|vt(x, y)+|2ρt(x) + |vt(x, y)−|2ρt(y)

)
η(x, y) dµ(x) dµ(y) dt

}
Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE):
vt = −∇ δE

δρ
= −∇K ∗ ρ with ∇V (x, y) = V (y)− V (x) gives

∂tρt(x) +

∫
Ω

(
ρt(x)∇(K ∗ ρ)(x, y)− − ρt(y)∇(K ∗ ρ)(x, y)+

)
η(x, y) dµ(y) = 0,

Today:

� Variational framework for (NLIE) based on upwind transportation metric

� Stability under graph limit n→∞ such that µn ∗
⇀ µ

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 4 (18)



Upwind continuity equation and upwind transportation metric (nonrigorous)

If {ρt}t≥0 has a density ρt � µ seek for solutions to

∂tρt(x) +

∫
Ω

(
ρt(x)vt(x, y)+ − ρt(y)vt(x, y)−

)
η(x, y) dµ(y) = 0 . CE

Tentative definition of upwind transportation metric via Benamou-Brenier

inf
(ρ,v)∈CE(ρ0,ρ1)

{∫ 1

0

∫∫
G

(
|vt(x, y)+|2ρt(x) + |vt(x, y)−|2ρt(y)

)
η(x, y) dµ(x) dµ(y) dt

}
Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE):
vt = −∇ δE

δρ
= −∇K ∗ ρ with ∇V (x, y) = V (y)− V (x) gives

∂tρt(x) +

∫
Ω

(
ρt(x)∇(K ∗ ρ)(x, y)− − ρt(y)∇(K ∗ ρ)(x, y)+

)
η(x, y) dµ(y) = 0,

Today:

� Variational framework for (NLIE) based on upwind transportation metric

� Stability under graph limit n→∞ such that µn ∗
⇀ µ

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 4 (18)



Upwind continuity equation and upwind transportation metric (nonrigorous)

If {ρt}t≥0 has a density ρt � µ seek for solutions to

∂tρt(x) +

∫
Ω

(
ρt(x)vt(x, y)+ − ρt(y)vt(x, y)−

)
η(x, y) dµ(y) = 0 . CE

Tentative definition of upwind transportation metric via Benamou-Brenier

inf
(ρ,v)∈CE(ρ0,ρ1)

{∫ 1

0

∫∫
G

(
|vt(x, y)+|2ρt(x) + |vt(x, y)−|2ρt(y)

)
η(x, y) dµ(x) dµ(y) dt

}
Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE):
vt = −∇ δE

δρ
= −∇K ∗ ρ with ∇V (x, y) = V (y)− V (x) gives

∂tρt(x) +

∫
Ω

(
ρt(x)∇(K ∗ ρ)(x, y)− − ρt(y)∇(K ∗ ρ)(x, y)+

)
η(x, y) dµ(y) = 0,

Today:

� Variational framework for (NLIE) based on upwind transportation metric

� Stability under graph limit n→∞ such that µn ∗
⇀ µ

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 4 (18)



Rigorous definition and setup

Difficulties:

� ρ might contain atoms, even if µ is Lebesgue
⇒ measure valued framework

� Benamou-Brenier functional is not convex in (ρt, vt)

⇒ flux variables

� Ω might be non-compact, for instance Rd

⇒ need to ensure tightness/integrability: ρ ∈ P2(Ω), η has certain moments

� η might be singular towards diagonal
⇒ want for suitable choice (µ, ηδ) the local limit∫∫

G

∣∣∇V (x, y)
∣∣2ηδ(x, y) dµ(y) dρ(x) =∫∫

G

∣∣∣∣V (x)− V (y)

|x− y|

∣∣∣∣2|x− y|2ηδ(x, y) dµ(y) dρ(x)→
∫

Ω

|∇V (x)|2 dρ(x)

Expect only uniform integrability of
∫
Bε(x)

|x− y|2ηδ(x, y) dµ(y)
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Nonlocal continuity equation and action

Nonlocal continuity equation in measure valued flux form

A pair (ρt, jt)t∈[0,T ] ∈ CET provided that (ρt, jt) ∈ P(Ω)×M(G) for all t ∈ [0, T ]:

∂tρt +∇ · jt = 0 in C∞c ([0, T )× Ω)∗

That is ∇ · j is adjoint of ∇ϕ(x, y) = ϕ(y)− ϕ(x) defined by∫ T

0

∫
Ω

∂tϕt(x) dρt(x) dt+

∫ T

0

∫∫
G

∇ϕt(x, y) djt(x, y) dt = 0 .

∣∣∇ϕ(x, y)
∣∣ ≤ ‖ϕ‖C1(Ω)(2 ∧ |x− y|)⇒ well-defined under integrability condition∫ T

0

∫∫
G

(2 ∧ |x− y|) d|jt|(x, y) dt < +∞ .
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Set dρ̂1(x, y) = η(x, y) dρ(x) dµ(y) and dρ̂2(x, y) = η(x, y) dµ(x) dρ(y)

For j ∈M(G), set |λ| = |ρ̂1|+ |ρ̂2|+ |j| ∈ M+(G) and define

A(ρ, j) =

∫∫
G

(
α

(
dj

d|λ| ,
dρ̂1

d|λ|

)
+ α

(
− dj

d|λ| ,
dρ̂2

d|λ|

))
d|λ|.

Hereby, the lsc convex, and pos. one-homogeneous function α is defined by

α(j, r) :=


(j+)2

r
if r > 0,

0 if j = 0 and r = 0,

+∞ if j 6= 0 and r = 0,

with j+ = max{0, j} .

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 6 (18)



Finite action leads to upwind flux

Proposition

Let (ρ, j) ∈ P(Ω)×M(Ω) such that A(ρ, j) <∞, then:

� there exists a measurable nonlocal vectorfield v : G→ R such that

dj(x, y) = v(x, y)+η(x, y) dρ(x) dµ(y)− v(x, y)−η(x, y) dµ(x) dρ(y) ,

and it holds

A(ρ, j) =

∫∫
G

(
|v(x, y)+|2 dρ̂1(x, y) + |v(x, y)−|2 dρ̂2(x, y)

)
.

� there exists an antisymmetric jas ∈Mas
ρ̂ (G) such that

∇ · j = ∇ · jas, that is
∫∫

G

∇φ dj =

∫∫
G

∇φ djas ∀φ ∈ C∞c (Ω),

and an antisymmetric vas : G→ R with

A(ρ, jas) = 2

∫∫
G

|vas(x, y)+|2 dρ̂1(x, y) ≤ A(ρ, j).
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Lower semicontinuity and integrability

Assumption (weight function)

The µ-measurable nonnegative symmetric lsc. function η : G→ R satisfies:

� for some Cη ∈ (0,∞)

sup
x∈Ω

∫
Ω

(
|x− y|2 ∨ |x− y|4

)
η(x, y) dµ(y) ≤ Cη .

Consequences:

� Lower semicontinuity: If ρn ∗
⇀ ρ in P(Ω) and jn

∗
⇀ j inMloc(G), then

lim infn→+∞A(ρn, jn) ≥ A(ρ, j).

� Integrability of flux: For ρ ∈ P2(Ω) and j ∈M(G) it holds∫∫
G

(2 ∧ |x− y|) d|j|(x, y) ≤ 2
√
Cη(M2(ρ) + 1)

√
A(ρ, j) .

⇒ well-posedness of CE!
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Continuity equation

Continuity equation in measure valued flux form

A pair (ρt, jt)t∈[0,T ] ∈ CET provided that (ρt, jt) ∈ P2(Ω)×M(G) for all t ∈ [0, T ]:

∂tρt +∇ · jt = 0 in Cc([0, T )× Ω)∗

That is ∇ · j is adjoint of ∇ϕ(x, y) = ϕ(y)− ϕ(x) defined by∫ T

0

∫
Ω

∂tϕt(x) dρt(x) dt+

∫ T

0

∫∫
G

∇ϕt(x, y) djt(x, y) dt = 0 .

∣∣∇ϕ(x, y)
∣∣ ≤ ‖ϕ‖C1(Ω)(2 ∧ |x− y|)⇒ well-defined under integrability condition∫ T

0

∫∫
G

(2 ∧ |x− y|) d|jt|(x, y) dt < +∞ .

� Existence of measure valued weakly continuous solutions

� {ρn0 }n∈N ⊂ P2(Ω) with supn∈NM2(ρn0 ) < +∞ and (ρn, jn) ∈ CET such that
supn

∫ T
0
A(ρnt , j

n
t ) dt < +∞, then also supt∈[0,T ] supn∈NM2(ρnt ) < +∞.
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Compactness of solutions to CE

Assumption (weight function)

The µ-measurable nonnegative symmetric lsc. function η : G→ R satisfies:

� The measure η(·, ·) dµ is uniformly integrable close to diagonal, that is

lim
ε→0

sup
x∈Ω

∫
Bε(x)

|x− y|2 η(x, y) dµ(y) = 0 , Bε(x) =
{
y ∈ Ω : |x− y| < ε

}
.

Compactness: Let (ρn, jn) ∈ CET for each n ∈ N such that

sup
n∈N

M2(ρn0 ) <∞ and sup
n

∫ T

0

A(ρnt , j
n
t ) dt < +∞.

Then, there exists (ρ, j) ∈ CET such that

ρnt ⇀ ρt in P2(Ω) for all t ∈ [0, T ]

jn
∗
⇀ j inMloc(G× [0, T ]).

Moreover, the action is lower semicontinuous

lim inf
n→+∞

∫ T

0

A(ρnt , j
n
t ) dt ≥

∫ T

0

A(ρt, jt) dt.
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Upwind transportation metric

For ρ0, ρ1 ∈ P2(Ω) the nonlocal upwind transportation quasimetric is defined by

T (ρ0, ρ1)2 = inf

{∫ 1

0

A(ρt, jt) dt : (ρ, j) ∈ CE(ρ0, ρ1)

}
.

Properties:

� The infimum is attained for (ρ, j) ∈ CE(ρ0, ρ1) with A(ρt, jt) = T (ρ0, ρ1)2.

� Comparison with Wasserstein W1(ρ0, ρ1) ≤ 2
√
Cη
√
T (ρ0, ρ1).

⇒ topology is stronger than W1.

� T is jointly weakly∗ lower semicontinuous.

� T is a quasimetric on P2(Ω), in particular it is in general non-symmetric!

� {ρt}t∈[0,1] ∈ AC(0, 1; (P2(Ω), T )) iff
∫ 1

0

√
A(ρt, jt) dt <∞.

� For ρ ∈ P2(Ω) holds j ∈ TρP2(Ω) iff j � ρ̂ and

v =
dj

dρ̂1
∈
{
∇ϕ |ϕ ∈ C∞c (Ω)

}L2(ρ̂)
.
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Two-point space

Fix the graph Ω = {0, 1} with η(0, 1) = η(1, 0) = α > 0, µ(0) = p ∈ (0, 1) and
µ(1) = q ∈ (0, 1) such that p+ q = 1. For all ρ, ν ∈ P(Ω) with ρ, ν � µ it holds

T (ρ, ν) =


2√
αp

(√
ρ1 −

√
ν1

)
, if ρ0 < ν0

2√
αq

(√
ρ0 −

√
ν0

)
, if ν0 < ρ0.
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Finslerian geometry and gradient flows

By previous representation: Associate to (ρt)t∈[0,1] ∈ AC
(
0, 1; (P2(Ω), T )

)
an

antisymmetric (wt)t∈[0,1] such that (ρt, jt)t∈[0,1] ∈ CE and

djt(x, y) = wt(x, y)+ dρ̂1(x, y)− wt(x, y)− dρ̂2(x, y) .

The geometry induced by T is Finslerian:
⇒ inner product in tangent space depends on ρ and w ∈ TρP2(Ω)!

Finslerian inner product

For w ∈ TρP2(Ω) define gρ,w : TρP2(Ω)× TρP2(Ω)→ R by

gρ,w(u, v) =

∫∫
G

u(x, y)v(x, y)
(
χ{w>0}(x, y) dρ̂1(x, y) + χ{w<0}(x, y) dρ̂2(x, y)

)
.

→ define gradient flow for interaction energy E in terms of curves of maximal slope

Attention: In the present setting the dissipation of a AC-curve will depend on wt!
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Chain rule and curves of maximal slope

Recall: interaction energy E

E(ρ) =
1

2

∫∫
Ω×Ω

K(x, y) dρ(x) dρ(y) .

Assumption: The potential K : Ω× Ω→ R satisfies

(K1) K ∈ C(Ω× Ω);

(K2) K is symmetric, i.e. K(x, y) = K(y, x), for all (x, y) ∈ Ω× Ω;

(K3) for some L ≥ 1 and for all (x, y), (x̃, ỹ) ∈ Ω× Ω

|K(x, y)−K(x′, y′)| ≤ L
(
|(x, y)− (x̃, ỹ)| ∨ |(x, y)− (x̃, ỹ)|2

)
.

local Lipschitz and at most quadratic growth

Chain rule

Let ρ ∈ AC(0, T ; (P2(Ω), T )), then ∀ 0 ≤ s ≤ t ≤ T

E(ρt)− E(ρs) =

∫ t

s

∫∫
G

∇δE
δρ

(x, y) djτ (x, y) dτ =

∫ t

s

gρτ ,wτ

(
∇δE
δρ
, wτ

)
dτ
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∫ t

s
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G

∇δE
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(x, y) djτ (x, y) dτ =

∫ t

s

gρτ ,wτ

(
∇δE
δρ
, wτ

)
dτ

Curves of maximal slope: For any ρ ∈ AC(0, T ; (P2(Ω), T )) holds

E(ρT )− E(ρ0) ≥ −1

2

∫ T

0

gρt,wt

(
∇δE
δρ
,∇δE

δρ

)
dt− 1

2

∫ T

0

gρt,wt(wt, wt) dt .

with equality iff wt = −∇ δE(ρt)
δρ

= −∇K ∗ ρt
⇒ Define the nonnegative de Giorgi functional by

GT (ρ) = E(ρT ) + E(ρ0) +
1

2

∫ T

0

D(ρt, wt) dt+
1

2

∫ T

0

A(ρt, wt) dt ≥ 0 ,

where

D(ρt, wt) =

∫
G

∣∣∣∣∇δE(ρt)

δρ
(x, y)

∣∣∣∣2(χ{wt>0}(x, y) dρ̂1(x, y) + χ{wt<0}(x, y) dρ̂2(x, y)
)
.
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Variational characterization of solutions

The de Giorgi functional gives a variation characterization of solutions to

∂tρ+∇ · j = 0 in C∞c ([0, T ]× Ω)∗ , (NLIE)

where the flux j is given by

dj(x, y) = ∇(K∗ρ)(x, y)−η(x, y) dρ(x) dµ(y)−∇(K∗ρ)(x, y)+η(x, y) dρ(y) dµ(x) .

Curves of minimal slope characterization

Let (ρt)t∈[0,T ] ∈ AC2(0, T ; (P2(Ω), T )) be such that
∫ T

0
D(ρt, wt) dt <∞, then

� GT (ρ) ≥ 0

� GT (ρ) = 0 iff (ρt)t∈[0,T ] is a weak solution to (NLIE).

� Minimizers exist by direct method, however not necessarily global!
⇒ ToDo: redo the minimizing movement scheme in the quasimetric setting

� Alternatively: Existence of solutions for (NLIE) via classical fix-point argument
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Stability with respect to graph approximations

Let µn ∈M(Ω) be such that µn ∗
⇀ µ and define

GnT (ρn) = E(ρnT )− E(ρ0) +
1

2

∫∫ T

0

An(ρnt , j
n
t ) dt+

1

2

∫∫ T

0

D(ρnt , j
n
t ) dt ,

where An and Dn are defined with base measure µn.

Stability of gradient flows à la Sandier-Serfaty

Let ρn ∈ AC2(0, T ; (P(Ω), Tµn)) such that supn GnT (ρn) <∞.
Then, there exists ρ ∈ AC2(0, T ; (P(Ω), Tµ)) such that

ρnt
∗
⇀ ρt in P2(Ω) for a.e. t ∈ [0, T ]

jn
∗
⇀ j inMloc(G× [0, T ])

lim inf
n

∫ T

0

An(ρnt , j
n
t ) dt ≥

∫ T

0

A(ρt, jt) dt

lim inf
n

∫ T

0

Dn(ρnt , j
n
t ) dt ≥

∫ T

0

D(ρt, jt) dt .

In particular weak solutions of (NLIE) with base measure µn converge to ones wrt. µ.
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Open questions / Future work

� convexity vs. contractivity vs. stability
⇒ in Finslerian geometry become different concepts [Ohta-Sturm ’12]

� EVI formulation leading to well-posedness

� minimizing movement schemes (JKO)
⇒ extend classical theory to quasimetric setting and beyond

� local limit δ → 0 to obtain interaction equation

� diagonal limits: N →∞ and δ → 0 to obtain even different PDEs

� Free energies including entropies

E(ρ) = σ

∫
log ρ(x) dρ(x) +

1

2

∫∫
K(x, y) dρ(x) dρ(y)

For σ > 0 expect a Scharfetter-Gummel gradient structure

� Applications/inspiration through other numerical (finite-volume) schemes
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Thank you for your attention!
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Literature

Recent advances in discrete/nonlocal gradient flows

� [Maas ’11] / [Mielke ’11] / [Chow, Huang, Li, Zhou ’12]
Markov chains and chemical reaction networks

� [Gigli, Maas ’13] Gromov-Hausdorff convergence to Wasserstein

� [Erbar ’14] Jump processes −(−∆)α/2 for α ∈ (0, 2).

� [Disser, Liero ’14] Passage from Markov chains to Fokker-Planck

� [Erbar, Fathi, Laschos, S. ’16] Mean-field limit
from weakly interacting Markov chains to nonlinear Markov chains

� [Trillos ’19] Gromov-Hausdorff convergence of random point clouds

All these works are built around of gradient flows for (relative) entropies:

Fσ(ρn) =
σ

n

n∑
i=1

ρn(xi) log ρn(xi) +
1

2n2

∑
i6=j

K(xi, xj)ρ
n(xi)ρ

n(xj)

Goal: Want to consider σ = 0!
Problem: Impossible to pass to the limit σ → 0 in the nonlocal metrics from above.
⇒ using nonsymmetric gradient structures seems to be unavoidable.
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