Meanfield limits on graphs and the upwind transportation metric

André Schlichting

Institute for Applied Mathematics, University of Bonn

Joint work with Antonio Esposito, Francesco Patacchini and Dejan Slepčev

Interacting particle systems: Mean-field limits and applications to machine learning

July 19, 2019

Ingredients:

- *n* points $\{x_i\}_{i=1}^n$ sampled from $\Omega \subset \mathbb{R}^d$ according to $\mu \in \mathcal{M}(\Omega)$ ⇒ empirical measure $\mu^n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$
- a symmetric weight function $\eta: G \to [0, \infty)$ with $G = \Omega \times \Omega \setminus \{x = y\}$ $\Rightarrow (\mu^n, n)$ defines a weighted graph

Ingredients:

n points {x_i}ⁿ_{i=1} sampled from Ω ⊂ ℝ^d according to μ ∈ M(Ω)
 ⇒ empirical measure μⁿ = ¹/_n ∑ⁿ_{i=1} δ_{x_i}
 a symmetric weight function η : G → [0, ∞) with G = Ω × Ω \ {x = y}
 ⇒ (μⁿ, η) defines a weighted graph

Goal: Evolution equations on graphs

For $\rho \in \mathcal{P}(\Omega)$ and symmetric $K \in C(\Omega \times \Omega)$ define the *interaction energy*

$$\mathcal{E}(\rho) = \frac{1}{2} \iint_{\Omega \times \Omega} K(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y)$$

Goal: Define (gradient flow) dynamic for energy \mathcal{E} on weighted graph (μ, η) .

Subgoals:

Dynamic should be stable under graph limit $n \to \infty$ such that $\mu^n \stackrel{*}{\rightharpoonup} \mu$ (μ^n, η) becomes a continuous graph (μ, η)

Dynamic should be consistent/stable for local limit: For $\mu = \text{Leb}(\mathbb{R}^d)$ and $\eta^{\delta}(x, y) = \delta^{-d} \eta\left(\frac{x-y}{\delta}\right)$, the limit $\delta \to 0$ shall be the interaction/aggregation equation

$$\partial_t \rho_t = \nabla \cdot \left(\rho_t \nabla K * \rho_t \right) \tag{IE}$$

(IE) is Wasserstein gradient flow for $\mathcal{E} \Rightarrow$ find suitable nonlocal metric \mathcal{T} on (μ, η) .

 \Rightarrow Gradient flow of \mathcal{E} wrt \mathcal{T} is nonlocal interaction equation on weighted graph (μ, η)

Goal: Evolution equations on graphs

For $\rho \in \mathcal{P}(\Omega)$ and symmetric $K \in C(\Omega \times \Omega)$ define the *interaction energy*

$$\mathcal{E}(\rho) = \frac{1}{2} \iint_{\Omega \times \Omega} K(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y)$$

Goal: Define (gradient flow) dynamic for energy \mathcal{E} on weighted graph (μ, η) .

Subgoals:

- Dynamic should be stable under graph limit $n \to \infty$ such that $\mu^n \stackrel{*}{\rightharpoonup} \mu$ (μ^n, η) becomes a continuous graph (μ, η)
- Dynamic should be consistent/stable for local limit: For $\mu = \text{Leb}(\mathbb{R}^d)$ and $\eta^{\delta}(x, y) = \delta^{-d} \eta\left(\frac{x-y}{\delta}\right)$, the limit $\delta \to 0$ shall be the interaction/aggregation equation

$$\partial_t \rho_t = \nabla \cdot \left(\rho_t \nabla K * \rho_t \right) \tag{IE}$$

(IE) is Wasserstein gradient flow for $\mathcal{E} \Rightarrow$ find suitable nonlocal metric \mathcal{T} on (μ, η) .

 \Rightarrow Gradient flow of \mathcal{E} wrt \mathcal{T} is nonlocal interaction equation on weighted graph (μ, η)

Goal: Evolution equations on graphs

For $\rho \in \mathcal{P}(\Omega)$ and symmetric $K \in C(\Omega \times \Omega)$ define the *interaction energy*

$$\mathcal{E}(\rho) = \frac{1}{2} \iint_{\Omega \times \Omega} K(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y)$$

Goal: Define (gradient flow) dynamic for energy \mathcal{E} on weighted graph (μ, η) .

Subgoals:

- Dynamic should be stable under graph limit $n \to \infty$ such that $\mu^n \stackrel{*}{\rightharpoonup} \mu$ (μ^n, η) becomes a continuous graph (μ, η)
- Dynamic should be consistent/stable for local limit: For $\mu = \text{Leb}(\mathbb{R}^d)$ and $\eta^{\delta}(x, y) = \delta^{-d} \eta\left(\frac{x-y}{\delta}\right)$, the limit $\delta \to 0$ shall be the interaction/aggregation equation

$$\partial_t \rho_t = \nabla \cdot \left(\rho_t \nabla K * \rho_t \right) \tag{IE}$$

(IE) is Wasserstein gradient flow for $\mathcal{E} \Rightarrow$ find suitable nonlocal metric \mathcal{T} on (μ, η) .

 \Rightarrow Gradient flow of \mathcal{E} wrt \mathcal{T} is nonlocal interaction equation on weighted graph (μ, η)

What is the nonlocal analog of the continuity equation:

$$\partial_t \rho_t + \nabla \cdot j_t = 0$$

 $j_t(x) = \rho_t(x) v_t(x)$?

Fluxes j_t are defined on edges $(x, y) \in G$ and the divergence is nonlocal

$$\partial_t \rho_t(x) + (\overline{\nabla} \cdot j_t)(x) = \partial_t \rho_t + \int_\Omega j_t(x, y) \, \mathrm{d}y = 0 \; .$$

Given a nonlocal vectorfield $v_t : G \to \mathbb{R}$: velocity of a particle going from x to y.

What is the flux j_t induced by the vectorfield v_t given ρ_t ?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic. So far¹ a *general mean* multiplies the velocity: $j_t(x, y) = \theta(\rho_t(x), \rho_t(y))v_t(x, y)$ Choice is reasonable for diffusive equations, but not suitable for first order ones. Upwind flux: Set $(a)_+ = \max\{0, a\}$ and $(a)_- = \max\{0, -a\}$ and define $j_t(x, y) = (\rho(x)v(x, y)_+ - \rho(y)v(x, y)_-)\eta(x, y)\mu(y)$.

What is the nonlocal analog of the continuity equation:

$$\partial_t \rho_t + \nabla \cdot j_t = 0$$

 $j_t(x) = \rho_t(x) v_t(x)$?

Fluxes j_t are defined on edges $(x, y) \in G$ and the divergence is nonlocal

$$\partial_t \rho_t(x) + (\overline{\nabla} \cdot j_t)(x) = \partial_t \rho_t + \int_{\Omega} j_t(x, y) \, \mathrm{d}y = 0 \; .$$

Given a nonlocal vectorfield $v_t : G \to \mathbb{R}$: velocity of a particle going from x to y.

What is the flux j_t induced by the vectorfield v_t given ρ_t ?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic. So far¹ a *general mean* multiplies the velocity: $j_t(x, y) = \theta(\rho_t(x), \rho_t(y))v_t(x, y)$ Choice is reasonable for diffusive equations, but not suitable for first order ones. Upwind flux: Set $(a)_+ = \max\{0, a\}$ and $(a)_- = \max\{0, -a\}$ and define $j_t(x, y) = (\rho(x)v(x, y)_+ - \rho(y)v(x, y)_-)\eta(x, y)\mu(y)$.

What is the nonlocal analog of the continuity equation:

$$\partial_t \rho_t + \nabla \cdot j_t = 0$$

 $j_t(x) = \rho_t(x) v_t(x)$?

Fluxes j_t are defined on edges $(x, y) \in G$ and the divergence is nonlocal

$$\partial_t \rho_t(x) + (\overline{\nabla} \cdot j_t)(x) = \partial_t \rho_t + \int_{\Omega} j_t(x, y) \, \mathrm{d}y = 0 \,.$$

Given a nonlocal vectorfield $v_t : G \to \mathbb{R}$: velocity of a particle going from x to y.

What is the flux j_t induced by the vectorfield v_t given ρ_t ?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic. So far¹ a *general mean* multiplies the velocity: $j_t(x, y) = \theta(\rho_t(x), \rho_t(y))v_t(x, y)$ Choice is reasonable for diffusive equations, but not suitable for first order ones. Upwind flux: Set $(a)_+ = \max\{0, a\}$ and $(a)_- = \max\{0, -a\}$ and define $j_t(x, y) = (\rho(x)v(x, y)_+ - \rho(y)v(x, y)_-)\eta(x, y)\mu(y)$.

What is the nonlocal analog of the continuity equation:

$$\partial_t \rho_t + \nabla \cdot j_t = 0$$

 $j_t(x) = \rho_t(x) v_t(x)$?

Fluxes j_t are defined on edges $(x, y) \in G$ and the divergence is nonlocal

$$\partial_t \rho_t(x) + (\overline{\nabla} \cdot j_t)(x) = \partial_t \rho_t + \int_{\Omega} j_t(x, y) \, \mathrm{d}y = 0 \; .$$

Given a nonlocal vectorfield $v_t : G \to \mathbb{R}$: velocity of a particle going from x to y.

What is the flux j_t induced by the vectorfield v_t given ρ_t ?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic. So far¹ a *general mean* multiplies the velocity: $j_t(x, y) = \theta(\rho_t(x), \rho_t(y))v_t(x, y)$ Choice is reasonable for diffusive equations, but not suitable for first order ones.

Upwind flux: Set $(a)_+ = \max\{0, a\}$ and $(a)_- = \max\{0, -a\}$ and define

 $j_t(x,y) = (\rho(x)v(x,y)_+ - \rho(y)v(x,y)_-)\eta(x,y)\mu(y) .$

What is the nonlocal analog of the continuity equation:

$$\partial_t \rho_t + \nabla \cdot j_t = 0$$

 $j_t(x) = \rho_t(x) v_t(x)$?

Fluxes j_t are defined on edges $(x, y) \in G$ and the divergence is nonlocal

$$\partial_t \rho_t(x) + (\overline{\nabla} \cdot j_t)(x) = \partial_t \rho_t + \int_{\Omega} j_t(x, y) \, \mathrm{d}y = 0 \; .$$

Given a nonlocal vectorfield $v_t : G \to \mathbb{R}$: velocity of a particle going from x to y.

What is the flux j_t induced by the vectorfield v_t given ρ_t ?

Problem: Choice is not canonical and has a lot of influence on the resulting dynamic. So far¹ a *general mean* multiplies the velocity: $j_t(x, y) = \theta(\rho_t(x), \rho_t(y))v_t(x, y)$ Choice is reasonable for diffusive equations, but not suitable for first order ones. Upwind flux: Set $(a)_+ = \max\{0, a\}$ and $(a)_- = \max\{0, -a\}$ and define $j_t(x, y) = (\rho(x)v(x, y)_+ - \rho(y)v(x, y)_-)\eta(x, y)\mu(y)$.

Upwind continuity equation and upwind transportation metric (nonrigorous)

If $\{\rho_t\}_{t\geq 0}$ has a density $\rho_t \ll \mu$ seek for solutions to

$$\partial_t \rho_t(x) + \int_{\Omega} \left(\rho_t(x) v_t(x, y)_+ - \rho_t(y) v_t(x, y)_- \right) \eta(x, y) \, \mathrm{d}\mu(y) = 0 \,. \qquad \text{CE}$$

Tentative definition of upwind transportation metric via Benamou-Brenier

$$\inf_{(\rho,v)\in \operatorname{CE}(\rho_0,\rho_1)} \left\{ \int_0^1 \iint_G \left(|v_t(x,y)_+|^2 \rho_t(x) + |v_t(x,y)_-|^2 \rho_t(y) \right) \eta(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \, \mathrm{d}t \right\}$$

Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE): $v_t = -\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho} = -\overline{\nabla} K * \rho$ with $\overline{\nabla} V(x, y) = V(y) - V(x)$ gives

$$\partial_t \rho_t(x) + \int_{\Omega} \Big(\rho_t(x) \overline{\nabla} (K * \rho)(x, y)_- - \rho_t(y) \overline{\nabla} (K * \rho)(x, y)_+ \Big) \eta(x, y) \, \mathrm{d}\mu(y) = 0,$$

Today:

Variational framework for (NLIE) based on upwind transportation metric

Stability under graph limit $n \to \infty$ such that $\mu^n \stackrel{*}{\rightharpoonup} \mu$

Upwind continuity equation and upwind transportation metric (nonrigorous)

If $\{\rho_t\}_{t\geq 0}$ has a density $\rho_t \ll \mu$ seek for solutions to

$$\partial_t \rho_t(x) + \int_{\Omega} (\rho_t(x) v_t(x, y)_+ - \rho_t(y) v_t(x, y)_-) \eta(x, y) \, \mathrm{d}\mu(y) = 0.$$
 CE

Tentative definition of upwind transportation metric via Benamou-Brenier

$$\inf_{(\rho,v)\in CE(\rho_0,\rho_1)} \left\{ \int_0^1 \iint_G \left(|v_t(x,y)_+|^2 \rho_t(x) + |v_t(x,y)_-|^2 \rho_t(y) \right) \eta(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \, \mathrm{d}t \right\}$$

Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE): $v_t = -\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho} = -\overline{\nabla} K * \rho$ with $\overline{\nabla} V(x, y) = V(y) - V(x)$ gives

$$\partial_t \rho_t(x) + \int_{\Omega} \Big(\rho_t(x) \overline{\nabla} (K * \rho)(x, y) - \rho_t(y) \overline{\nabla} (K * \rho)(x, y) \Big) \eta(x, y) \, \mathrm{d}\mu(y) = 0,$$

Today:

Variational framework for (NLIE) based on upwind transportation metric

Stability under graph limit $n \to \infty$ such that $\mu^n \stackrel{*}{\rightharpoonup} \mu$

Upwind continuity equation and upwind transportation metric (nonrigorous)

If $\{\rho_t\}_{t\geq 0}$ has a density $\rho_t \ll \mu$ seek for solutions to

$$\partial_t \rho_t(x) + \int_{\Omega} (\rho_t(x) v_t(x, y)_+ - \rho_t(y) v_t(x, y)_-) \eta(x, y) \, \mathrm{d}\mu(y) = 0.$$
 CE

Tentative definition of upwind transportation metric via Benamou-Brenier

$$\inf_{(\rho,v)\in \operatorname{CE}(\rho_0,\rho_1)} \left\{ \int_0^1 \iint_G \left(|v_t(x,y)_+|^2 \rho_t(x) + |v_t(x,y)_-|^2 \rho_t(y) \right) \eta(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \, \mathrm{d}t \right\}$$

Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE): $v_t = -\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho} = -\overline{\nabla} K * \rho$ with $\overline{\nabla} V(x, y) = V(y) - V(x)$ gives

$$\partial_t \rho_t(x) + \int_{\Omega} \Big(\rho_t(x) \overline{\nabla} (K * \rho)(x, y)_- - \rho_t(y) \overline{\nabla} (K * \rho)(x, y)_+ \Big) \eta(x, y) \, \mathrm{d}\mu(y) = 0,$$

Today:

1

Variational framework for (NLIE) based on upwind transportation metric

Stability under graph limit $n \to \infty$ such that $\mu^n \stackrel{*}{\rightharpoonup} \mu$

If $\{\rho_t\}_{t\geq 0}$ has a density $\rho_t \ll \mu$ seek for solutions to

$$\partial_t \rho_t(x) + \int_{\Omega} \left(\rho_t(x) v_t(x, y)_+ - \rho_t(y) v_t(x, y)_- \right) \eta(x, y) \, \mathrm{d}\mu(y) = 0 \,. \qquad \mathrm{CE}$$

Tentative definition of upwind transportation metric via Benamou-Brenier

$$\inf_{(\rho,v)\in \operatorname{CE}(\rho_0,\rho_1)} \left\{ \int_0^1 \iint_G \left(|v_t(x,y)_+|^2 \rho_t(x) + |v_t(x,y)_-|^2 \rho_t(y) \right) \eta(x,y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) \, \mathrm{d}t \right\}$$

Formal nonlocal Otto calculus leads to the nonlocal interaction equation (NLIE): $v_t = -\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho} = -\overline{\nabla} K * \rho$ with $\overline{\nabla} V(x, y) = V(y) - V(x)$ gives

$$\partial_t \rho_t(x) + \int_{\Omega} \Big(\rho_t(x) \overline{\nabla} (K * \rho)(x, y)_- - \rho_t(y) \overline{\nabla} (K * \rho)(x, y)_+ \Big) \eta(x, y) \, \mathrm{d}\mu(y) = 0,$$

Today:

1

- Variational framework for (NLIE) based on upwind transportation metric
- Stability under graph limit $n \to \infty$ such that $\mu^n \stackrel{*}{\rightharpoonup} \mu$

Difficulties:

- *ρ* might contain atoms, even if *μ* is Lebesgue ⇒ measure valued framework
- Benamou-Brenier functional is not convex in (ρ_t, v_t) ⇒ flux variables
- Ω might be non-compact, for instance \mathbb{R}^d ⇒ need to ensure tightness/integrability: $\rho \in \mathcal{P}_2(\Omega)$, η has certain moments
- $\begin{tabular}{ll} η might be singular towards diagonal \Rightarrow want for suitable choice (μ, η^{δ}) the local limit $$

$$\begin{split} & \iint_{G} \left| \overline{\nabla} V(x,y) \right|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) = \\ & \iint_{G} \left| \frac{V(x) - V(y)}{|x-y|} \right|^{2} |x-y|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \to \int_{\Omega} |\nabla V(x)|^{2} \, \mathrm{d}\rho(x) \end{split}$$

Expect only uniform integrability of $\int_{B_{arepsilon}(x)} |x-y|^2 \eta^{\delta}(x,y) \,\mathrm{d} \mu(y)$

Rigorous definition and setup

Difficulties:

- ρ might contain atoms, even if μ is Lebesgue \Rightarrow measure valued framework
- Benamou-Brenier functional is not convex in (ρ_t, v_t) \Rightarrow flux variables
- Ω might be non-compact, for instance \mathbb{R}^d ⇒ need to ensure tightness/integrability: $\rho \in \mathcal{P}_2(\Omega)$, η has certain moments
- η might be singular towards diagonal ⇒ want for suitable choice (μ, η^{δ}) the local limit

$$\begin{split} & \iint_{G} \left| \overline{\nabla} V(x,y) \right|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) = \\ & \iint_{G} \left| \frac{V(x) - V(y)}{|x-y|} \right|^{2} |x-y|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \to \int_{\Omega} |\nabla V(x)|^{2} \, \mathrm{d}\rho(x) \end{split}$$

Expect only uniform integrability of $\int_{B_{arepsilon}(x)} |x-y|^2 \eta^{\delta}(x,y) \,\mathrm{d} \mu(y)$

Difficulties:

- ρ might contain atoms, even if μ is Lebesgue \Rightarrow measure valued framework
- Benamou-Brenier functional is not convex in (ρ_t, v_t) \Rightarrow flux variables
- Ω might be non-compact, for instance \mathbb{R}^d ⇒ need to ensure tightness/integrability: $\rho \in \mathcal{P}_2(\Omega)$, η has certain moments

■ η might be singular towards diagonal ⇒ want for suitable choice (μ, η^{δ}) the local limit

$$\begin{split} &\iint_{G} \left| \overline{\nabla} V(x,y) \right|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) = \\ &\iint_{G} \left| \frac{V(x) - V(y)}{|x-y|} \right|^{2} |x-y|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \to \int_{\Omega} |\nabla V(x)|^{2} \, \mathrm{d}\rho(x) \end{split}$$

Expect only uniform integrability of $\int_{B_{arepsilon}(x)} |x-y|^2 \eta^{\delta}(x,y) \,\mathrm{d} \mu(y)$

Difficulties:

- ρ might contain atoms, even if μ is Lebesgue \Rightarrow measure valued framework
- Benamou-Brenier functional is not convex in (ρ_t, v_t) \Rightarrow flux variables
- Ω might be non-compact, for instance \mathbb{R}^d \Rightarrow need to ensure tightness/integrability: $\rho \in \mathcal{P}_2(\Omega)$, η has certain moments
- η might be singular towards diagonal \Rightarrow want for suitable choice (μ, η^{δ}) the local limit

$$\begin{split} &\iint_{G} \left| \overline{\nabla} V(x,y) \right|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) = \\ &\iint_{G} \left| \frac{V(x) - V(y)}{|x-y|} \right|^{2} |x-y|^{2} \eta^{\delta}(x,y) \, \mathrm{d}\mu(y) \, \mathrm{d}\rho(x) \to \int_{\Omega} |\nabla V(x)|^{2} \, \mathrm{d}\rho(x) \end{split}$$

Expect only uniform integrability of $\int_{B_{\varepsilon}(x)} \lvert x-y \rvert^2 \eta^{\delta}(x,y) \, \mathrm{d} \mu(y)$

Nonlocal continuity equation in measure valued flux form

A pair $(\rho_t, \boldsymbol{j}_t)_{t \in [0,T]} \in CE_T$ provided that $(\rho_t, \boldsymbol{j}_t) \in \mathcal{P}(\Omega) \times \mathcal{M}(G)$ for all $t \in [0,T]$:

 $\partial_t \rho_t + \overline{\nabla} \cdot \boldsymbol{j}_t = 0 \qquad \qquad \text{in } C_c^{\infty}([0,T) \times \Omega)^*$

That is $\overline{\nabla}\cdot \pmb{j}$ is adjoint of $\overline{\nabla}\varphi(x,y)=\varphi(y)-\varphi(x)$ defined by

$$\int_0^T \int_\Omega \partial_t \varphi_t(x) \, \mathrm{d} \rho_t(x) \, \mathrm{d} t + \int_0^T \iint_G \overline{\nabla} \varphi_t(x, y) \, \mathrm{d} \boldsymbol{j}_t(x, y) \, \mathrm{d} t = 0 \, .$$

 $\left|\overline{\nabla}\varphi(x,y)\right| \leq \|\varphi\|_{C^{1}(\Omega)}(2 \wedge |x-y|) \Rightarrow$ well-defined under integrability condition

$$\int_0^T \iint_G (2 \wedge |x - y|) \,\mathrm{d} |\boldsymbol{j}_t|(x, y) \,\mathrm{d} t < +\infty \,.$$

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 6 (18)

Nonlocal continuity equation in measure valued flux form

A pair $(\rho_t, \boldsymbol{j}_t)_{t \in [0,T]} \in CE_T$ provided that $(\rho_t, \boldsymbol{j}_t) \in \mathcal{P}(\Omega) \times \mathcal{M}(G)$ for all $t \in [0,T]$:

 $\partial_t \rho_t + \overline{\nabla} \cdot \boldsymbol{j}_t = 0 \qquad \text{in } C_c^{\infty}([0,T) \times \Omega)^*$

Action

Set $d\hat{\rho}_1(x,y) = \eta(x,y) d\rho(x) d\mu(y)$ and $d\hat{\rho}_2(x,y) = \eta(x,y) d\mu(x) d\rho(y)$ For $\mathbf{j} \in \mathcal{M}(G)$, set $|\lambda| = |\hat{\rho}_1| + |\hat{\rho}_2| + |\mathbf{j}| \in \mathcal{M}^+(G)$ and define

$$\mathcal{A}(\rho, \boldsymbol{j}) = \iint_{G} \left(\alpha \left(\frac{\mathrm{d}\boldsymbol{j}}{\mathrm{d}|\boldsymbol{\lambda}|}, \frac{\mathrm{d}\hat{\rho}_{1}}{\mathrm{d}|\boldsymbol{\lambda}|} \right) + \alpha \left(-\frac{\mathrm{d}\boldsymbol{j}}{\mathrm{d}|\boldsymbol{\lambda}|}, \frac{\mathrm{d}\hat{\rho}_{2}}{\mathrm{d}|\boldsymbol{\lambda}|} \right) \right) \mathrm{d}|\boldsymbol{\lambda}|.$$

Hereby, the lsc convex, and pos. one-homogeneous function $\boldsymbol{\alpha}$ is defined by

$$\alpha(j,r) := \begin{cases} \frac{(j_{+})^{2}}{r} & \text{if } r > 0, \\ 0 & \text{if } j = 0 \text{ and } r = 0, \\ +\infty & \text{if } j \neq 0 \text{ and } r = 0, \end{cases} \quad \text{ with } j_{+} = \max\{0, j\} \ .$$

Proposition

Let $(\rho, j) \in \mathcal{P}(\Omega) \times \mathcal{M}(\Omega)$ such that $\mathcal{A}(\rho, j) < \infty$, then:

 \blacksquare there exists a measurable nonlocal vector field $v:G\to \mathbbm{R}$ such that

$$\mathrm{d}\boldsymbol{j}(x,y) = v(x,y)_+ \eta(x,y) \,\mathrm{d}\rho(x) \,\mathrm{d}\mu(y) - v(x,y)_- \eta(x,y) \,\mathrm{d}\mu(x) \,\mathrm{d}\rho(y) \;,$$

and it holds

$$\mathcal{A}(\rho, \boldsymbol{j}) = \iint_{G} \left(|v(x, y)_{+}|^{2} \,\mathrm{d}\hat{\rho}_{1}(x, y) + |v(x, y)_{-}|^{2} \,\mathrm{d}\hat{\rho}_{2}(x, y) \right) \,.$$

• there exists an antisymmetric $\boldsymbol{j}^{as} \in \mathcal{M}^{as}_{\hat{\rho}}(G)$ such that

$$\overline{\nabla}\cdot\boldsymbol{j}=\overline{\nabla}\cdot\boldsymbol{j}^{as},\quad\text{that is}\quad \iint_{G}\overline{\nabla}\phi\,\mathrm{d}\boldsymbol{j}=\iint_{G}\overline{\nabla}\phi\,\mathrm{d}\boldsymbol{j}^{as}\quad\forall\phi\in C^{\infty}_{c}(\Omega),$$

and an antisymmetric $v^{as}:G\rightarrow \mathbbm{R}$ with

$$\mathcal{A}(\rho, \boldsymbol{j}^{as}) = 2 \iint_{G} |v^{as}(x, y)_{+}|^{2} d\hat{\rho}_{1}(x, y) \leq \mathcal{A}(\rho, \boldsymbol{j}).$$

Assumption (weight function)

The μ -measurable nonnegative symmetric lsc. function $\eta \colon G \to \mathbb{R}$ satisfies:

for some
$$C_\eta \in (0,\infty)$$

$$\sup_{x\in\Omega}\int_{\Omega}\left(|x-y|^{2}\vee|x-y|^{4}\right)\eta(x,y)\,\mathrm{d}\mu(y)\leq C_{\eta}\;.$$

Consequences:

Lower semicontinuity: If
$$\rho^n \stackrel{*}{\rightharpoonup} \rho$$
 in $\mathcal{P}(\Omega)$ and $j^n \stackrel{*}{\rightharpoonup} j$ in $\mathcal{M}_{\text{loc}}(G)$, then
$$\liminf_{n \to +\infty} \mathcal{A}(\rho^n, j^n) \geq \mathcal{A}(\rho, j).$$

Integrability of flux: For $\rho \in \mathcal{P}_2(\Omega)$ and $j \in \mathcal{M}(G)$ it holds

$$\iint_G (2 \wedge |x-y|) \,\mathrm{d}|\boldsymbol{j}|(x,y) \le 2\sqrt{C_\eta(M_2(\rho)+1)}\sqrt{\mathcal{A}(\rho,\boldsymbol{j})} \,.$$

 \Rightarrow well-posedness of CE

Assumption (weight function)

The μ -measurable nonnegative symmetric lsc. function $\eta \colon G \to \mathbb{R}$ satisfies:

for some
$$C_{\eta} \in (0,\infty)$$

$$\sup_{x\in\Omega}\int_{\Omega} \left(|x-y|^2 \vee |x-y|^4\right) \eta(x,y) \,\mathrm{d}\mu(y) \le C_{\eta} \;.$$

Consequences:

- Lower semicontinuity: If $\rho^n \stackrel{*}{\rightharpoonup} \rho$ in $\mathcal{P}(\Omega)$ and $j^n \stackrel{*}{\rightharpoonup} j$ in $\mathcal{M}_{\text{loc}}(G)$, then $\liminf_{n \to +\infty} \mathcal{A}(\rho^n, j^n) \geq \mathcal{A}(\rho, j).$
- Integrability of flux: For $\rho \in \mathcal{P}_2(\Omega)$ and $\boldsymbol{j} \in \mathcal{M}(G)$ it holds

$$\iint_G (2 \wedge |x-y|) \,\mathrm{d}|\boldsymbol{j}|(x,y) \leq 2\sqrt{C_\eta(M_2(\rho)+1)}\sqrt{\mathcal{A}(\rho,\boldsymbol{j})} \,.$$

 \Rightarrow well-posedness of $\mathrm{CE}!$

Continuity equation in measure valued flux form

A pair $(\rho_t, \boldsymbol{j}_t)_{t \in [0,T]} \in CE_T$ provided that $(\rho_t, \boldsymbol{j}_t) \in \mathcal{P}_2(\Omega) \times \mathcal{M}(G)$ for all $t \in [0,T]$:

$$\partial_t \rho_t + \overline{\nabla} \cdot \boldsymbol{j}_t = 0 \qquad \qquad \text{in } C_c([0,T) \times \Omega)^*$$

That is $\overline{\nabla}\cdot \pmb{j}$ is adjoint of $\overline{\nabla}\varphi(x,y)=\varphi(y)-\varphi(x)$ defined by

$$\int_0^T \int_\Omega \partial_t \varphi_t(x) \, \mathrm{d} \rho_t(x) \, \mathrm{d} t + \int_0^T \iint_G \overline{\nabla} \varphi_t(x,y) \, \mathrm{d} \boldsymbol{j}_t(x,y) \, \mathrm{d} t = 0 \, .$$

$$\begin{split} \left|\overline{\nabla}\varphi(x,y)\right| &\leq \|\varphi\|_{C^1(\Omega)}(2 \wedge |x-y|) \Rightarrow \text{well-defined under integrability condition} \\ &\int_0^T \iint_G (2 \wedge |x-y|) \,\mathrm{d}|\boldsymbol{j}_t|(x,y) \,\mathrm{d}t < +\infty \;. \end{split}$$

Existence of measure valued weakly continuous solutions

•
$$\{\rho_0^n\}_{n\in\mathbb{N}} \subset \mathcal{P}_2(\Omega)$$
 with $\sup_{n\in\mathbb{N}} M_2(\rho_0^n) < +\infty$ and $(\rho^n, j^n) \in \operatorname{CE}_T$ such that $\sup_n \int_0^T \mathcal{A}(\rho_t^n, j_t^n) \, \mathrm{d}t < +\infty$, then also $\sup_{t\in[0,T]} \sup_{n\in\mathbb{N}} M_2(\rho_t^n) < +\infty$.

Compactness of solutions to ${\rm CE}$

Assumption (weight function)

The μ -measurable nonnegative symmetric lsc. function $\eta \colon G \to \mathbb{R}$ satisfies:

The measure $\eta(\cdot,\cdot)\,\mathrm{d}\mu$ is uniformly integrable close to diagonal, that is

$$\lim_{\varepsilon \to 0} \sup_{x \in \Omega} \int_{B_{\varepsilon}(x)} |x - y|^2 \eta(x, y) \, \mathrm{d}\mu(y) = 0 \,, \quad B_{\varepsilon}(x) = \big\{ y \in \Omega : |x - y| < \varepsilon \big\}.$$

Compactness: Let $(\rho^n, j^n) \in CE_T$ for each $n \in \mathbb{N}$ such that

$$\sup_{n\in\mathbb{N}}M_2(\rho_0^n)<\infty\quad\text{and}\quad \sup_n\int_0^T\mathcal{A}(\rho_t^n,\boldsymbol{j}_t^n)\,\mathrm{d}t<+\infty.$$

Then, there exists $(\rho, \boldsymbol{j}) \in \operatorname{CE}_T$ such that

$$\begin{split} \rho_t^n &\rightharpoonup \rho_t & \text{ in } \mathcal{P}_2(\Omega) \text{ for all } t \in [0,T] \\ \boldsymbol{j}^n \stackrel{*}{\rightharpoonup} \boldsymbol{j} & \text{ in } \mathcal{M}_{\text{loc}}(G \times [0,T]). \end{split}$$

Moreover, the action is lower semicontinuous

$$\liminf_{n \to +\infty} \int_0^T \mathcal{A}(\rho_t^n, j_t^n) \, \mathrm{d}t \ge \int_0^T \mathcal{A}(\rho_t, j_t) \, \mathrm{d}t.$$

Compactness of solutions to ${\rm CE}$

Assumption (weight function)

The μ -measurable nonnegative symmetric lsc. function $\eta \colon G \to \mathbb{R}$ satisfies:

The measure $\eta(\cdot,\cdot) d\mu$ is uniformly integrable close to diagonal, that is

$$\lim_{\varepsilon \to 0} \sup_{x \in \Omega} \int_{B_{\varepsilon}(x)} |x - y|^2 \eta(x, y) \, \mathrm{d}\mu(y) = 0 \,, \quad B_{\varepsilon}(x) = \left\{ y \in \Omega : |x - y| < \varepsilon \right\}.$$

Compactness: Let $(\rho^n, j^n) \in CE_T$ for each $n \in \mathbb{N}$ such that

$$\sup_{n\in\mathbb{N}}M_2(\rho_0^n)<\infty\quad\text{and}\quad \sup_n\int_0^T\mathcal{A}(\rho_t^n,\boldsymbol{j}_t^n)\,\mathrm{d}t<+\infty.$$

Then, there exists $(\rho, j) \in CE_T$ such that

$$\begin{split} \rho_t^n &\rightharpoonup \rho_t \quad \text{in } \mathcal{P}_2(\Omega) \text{ for all } t \in [0,T] \\ \boldsymbol{j}^n \stackrel{*}{\rightharpoonup} \boldsymbol{j} \quad \text{in } \mathcal{M}_{\text{loc}}(G \times [0,T]). \end{split}$$

Moreover, the action is lower semicontinuous

$$\liminf_{n \to +\infty} \int_0^T \mathcal{A}(\rho_t^n, \boldsymbol{j}_t^n) \, \mathrm{d}t \ge \int_0^T \mathcal{A}(\rho_t, \boldsymbol{j}_t) \, \mathrm{d}t.$$

For $\rho_0, \rho_1 \in \mathcal{P}_2(\Omega)$ the nonlocal upwind transportation quasimetric is defined by

$$\mathcal{T}(\rho_0, \rho_1)^2 = \inf \left\{ \int_0^1 \mathcal{A}(\rho_t, \boldsymbol{j}_t) \, \mathrm{d}t : (\rho, \boldsymbol{j}) \in \mathrm{CE}(\rho_0, \rho_1) \right\}.$$

Properties:

- The infimum is attained for $(\rho, \mathbf{j}) \in CE(\rho_0, \rho_1)$ with $\mathcal{A}(\rho_t, \mathbf{j}_t) = \mathcal{T}(\rho_0, \rho_1)^2$.
- Comparison with Wasserstein $W_1(\rho^0, \rho^1) \leq 2\sqrt{C_\eta}\sqrt{\mathcal{T}(\rho^0, \rho^1)}$. \Rightarrow topology is stronger than W_1 .
- \blacksquare T is jointly weakly^{*} lower semicontinuous.
- **\mathcal{T}** is a quasimetric on $\mathcal{P}_2(\Omega)$, in particular it is in general non-symmetric!
- For $\rho \in \mathcal{P}_2(\Omega)$ holds $\boldsymbol{j} \in T_{\rho}\mathcal{P}_2(\Omega)$ iff $\boldsymbol{j} \ll \hat{\rho}$ and

$$v = \frac{\mathrm{d}\boldsymbol{j}}{\mathrm{d}\hat{\rho}_1} \in \overline{\left\{\overline{\nabla}\varphi \,|\, \varphi \in C^\infty_c(\Omega)\right\}}^{L^2(\hat{\rho})}.$$

Two-point space

Fix the graph $\Omega = \{0,1\}$ with $\eta(0,1) = \eta(1,0) = \alpha > 0$, $\mu(0) = p \in (0,1)$ and $\mu(1) = q \in (0,1)$ such that p + q = 1. For all $\rho, \nu \in \mathcal{P}(\Omega)$ with $\rho, \nu \ll \mu$ it holds

$$\mathcal{T}(\rho,\nu) = \begin{cases} \frac{2}{\sqrt{\alpha p}} \left(\sqrt{\rho_1} - \sqrt{\nu_1}\right), & \text{if } \rho_0 < \nu_0\\ \frac{2}{\sqrt{\alpha q}} \left(\sqrt{\rho_0} - \sqrt{\nu_0}\right), & \text{if } \nu_0 < \rho_0. \end{cases}$$

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 12 (18)

Finslerian geometry and gradient flows

By previous representation: Associate to $(\rho_t)_{t\in[0,1]} \in \mathrm{AC}(0,1;(\mathcal{P}_2(\Omega),\mathcal{T}))$ an antisymmetric $(w_t)_{t\in[0,1]}$ such that $(\rho_t, \boldsymbol{j}_t)_{t\in[0,1]} \in \mathrm{CE}$ and

 $d\mathbf{j}_t(x,y) = w_t(x,y)_+ d\hat{\rho}_1(x,y) - w_t(x,y)_- d\hat{\rho}_2(x,y) .$

The geometry induced by \mathcal{T} is Finslerian:

 \Rightarrow inner product in tangent space depends on ρ and $w \in T_{\rho}\mathcal{P}_{2}(\Omega)!$

Finslerian inner product

For
$$w \in T_{\rho}\mathcal{P}_2(\Omega)$$
 define $g_{\rho,w} \colon T_{\rho}\mathcal{P}_2(\Omega) \times T_{\rho}\mathcal{P}_2(\Omega) \to \mathbb{R}$ by

$$g_{\rho,w}(u,v) = \iint_G u(x,y)v(x,y) \left(\chi_{\{w>0\}}(x,y) \,\mathrm{d}\hat{\rho}_1(x,y) + \chi_{\{w<0\}}(x,y) \,\mathrm{d}\hat{\rho}_2(x,y)\right).$$

 \rightarrow define gradient flow for interaction energy ${\cal E}$ in terms of curves of maximal slope

Attention: In the present setting the dissipation of a AC-curve will depend on w_t !

Recall: interaction energy \mathcal{E}

$$\mathcal{E}(\rho) = \frac{1}{2} \iint_{\Omega \times \Omega} K(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y) \;.$$

Assumption: The potential $K : \Omega \times \Omega \rightarrow \mathbb{R}$ satisfies

(K1) $K \in C(\Omega \times \Omega)$; (K2) K is symmetric, i.e. K(x, y) = K(y, x), for all $(x, y) \in \Omega \times \Omega$; (K3) for some $L \ge 1$ and for all $(x, y), (\tilde{x}, \tilde{y}) \in \Omega \times \Omega$

$$|K(x,y) - K(x',y')| \le L \left(|(x,y) - (\tilde{x},\tilde{y})| \lor |(x,y) - (\tilde{x},\tilde{y})|^2 \right).$$

local Lipschitz and at most quadratic growth

Chain rule

Let $\rho \in AC(0,T; (\mathcal{P}_2(\Omega),\mathcal{T}))$, then $\forall 0 \leq s \leq t \leq T$

$$\mathcal{E}(\rho_t) - \mathcal{E}(\rho_s) = \int_s^t \iint_G \overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}(x, y) \, \mathrm{d}\boldsymbol{j}_\tau(x, y) \, \mathrm{d}\tau = \int_s^t g_{\rho_\tau, w_\tau} \left(\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}, w_\tau\right) \mathrm{d}\tau$$

André Schlichting • Meanfield limits and the upwind transportation metric • June 06, 2019 • Page 14 (18)

Recall: interaction energy \mathcal{E}

$$\mathcal{E}(\rho) = \frac{1}{2} \iint_{\Omega \times \Omega} K(x, y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y) \;.$$

Assumption: The potential $K : \Omega \times \Omega \rightarrow \mathbb{R}$ satisfies

(K1) $K \in C(\Omega \times \Omega)$; (K2) K is symmetric, i.e. K(x, y) = K(y, x), for all $(x, y) \in \Omega \times \Omega$; (K3) for some $L \ge 1$ and for all $(x, y), (\tilde{x}, \tilde{y}) \in \Omega \times \Omega$

$$|K(x,y) - K(x',y')| \le L \left(|(x,y) - (\tilde{x},\tilde{y})| \lor |(x,y) - (\tilde{x},\tilde{y})|^2 \right).$$

local Lipschitz and at most quadratic growth

Chain rule

Let $\rho \in AC(0,T; (\mathcal{P}_2(\Omega),\mathcal{T}))$, then $\forall \ 0 \le s \le t \le T$

$$\mathcal{E}(\rho_t) - \mathcal{E}(\rho_s) = \int_s^t \iint_G \overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}(x, y) \, \mathrm{d}\boldsymbol{j}_{\tau}(x, y) \, \mathrm{d}\tau = \int_s^t g_{\rho_{\tau}, w_{\tau}} \left(\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}, w_{\tau}\right) \, \mathrm{d}\tau$$

Chain rule

Let $\rho \in AC(0,T; (\mathcal{P}_2(\Omega),\mathcal{T}))$, then $\forall \ 0 \le s \le t \le T$

$$\mathcal{E}(\rho_t) - \mathcal{E}(\rho_s) = \int_s^t \iint_G \overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}(x, y) \,\mathrm{d}\boldsymbol{j}_\tau(x, y) \,\mathrm{d}\tau = \int_s^t g_{\rho_\tau, w_\tau} \left(\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}, w_\tau\right) \,\mathrm{d}\tau$$

Curves of maximal slope: For any $\rho \in AC(0,T; (\mathcal{P}_2(\Omega), \mathcal{T}))$ holds

$$\mathcal{E}(\rho_T) - \mathcal{E}(\rho_0) \ge -\frac{1}{2} \int_0^T g_{\rho_t, w_t} \left(\overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho}, \overline{\nabla} \frac{\delta \mathcal{E}}{\delta \rho} \right) \mathrm{d}t - \frac{1}{2} \int_0^T g_{\rho_t, w_t}(w_t, w_t) \, \mathrm{d}t \; .$$

with equality iff $w_t = -\overline{\nabla} \frac{\delta \mathcal{E}(\rho_t)}{\delta \rho} = -\overline{\nabla} K * \rho_t$ \Rightarrow Define the nonnegative de Giorgi functional by

$$\mathcal{G}_T(\rho) = \mathcal{E}(\rho_T) + \mathcal{E}(\rho_0) + \frac{1}{2} \int_0^T \mathcal{D}(\rho_t, w_t) \,\mathrm{d}t + \frac{1}{2} \int_0^T \mathcal{A}(\rho_t, w_t) \,\mathrm{d}t \ge 0 ,$$

where

$$\mathcal{D}(\rho_t, w_t) = \int_G \left| \overline{\nabla} \frac{\delta \mathcal{E}(\rho_t)}{\delta \rho}(x, y) \right|^2 \left(\chi_{\{w_t > 0\}}(x, y) \,\mathrm{d}\hat{\rho}_1(x, y) + \chi_{\{w_t < 0\}}(x, y) \,\mathrm{d}\hat{\rho}_2(x, y) \right) \,\mathrm{d}\hat{\rho}_2(x, y) \,\mathrm{d}\hat{\rho}_$$

Variational characterization of solutions

The de Giorgi functional gives a variation characterization of solutions to

$$\partial_t \rho + \overline{\nabla} \cdot \boldsymbol{j} = 0 \quad \text{in } C_c^{\infty}([0,T] \times \Omega)^* ,$$
 (NLIE)

where the flux j is given by

$$d\mathbf{j}(x,y) = \overline{\nabla}(K*\rho)(x,y)_{-}\eta(x,y)\,d\rho(x)\,d\mu(y) - \overline{\nabla}(K*\rho)(x,y)_{+}\eta(x,y)\,d\rho(y)\,d\mu(x)\,.$$

Curves of minimal slope characterization

Let $(\rho_t)_{t\in[0,T]} \in \mathrm{AC}^2(0,T;(\mathcal{P}_2(\Omega),\mathcal{T}))$ be such that $\int_0^T \mathcal{D}(\rho_t,w_t) \,\mathrm{d}t < \infty$, then $\mathbf{\mathcal{G}}_T(\rho) \ge 0$

■ $\mathcal{G}_T(\rho) = 0$ iff $(\rho_t)_{t \in [0,T]}$ is a weak solution to (NLIE).

Minimizers exist by direct method, however not necessarily global!
 ⇒ ToDo: redo the minimizing movement scheme in the quasimetric setting

Alternatively: Existence of solutions for (NLIE) via classical fix-point argument

Variational characterization of solutions

The de Giorgi functional gives a variation characterization of solutions to

$$\partial_t \rho + \overline{\nabla} \cdot \boldsymbol{j} = 0 \quad \text{in } C_c^{\infty}([0,T] \times \Omega)^* ,$$
 (NLIE)

where the flux j is given by

$$\mathrm{d}\boldsymbol{j}(x,y) = \overline{\nabla}(K*\rho)(x,y)_{-}\eta(x,y)\,\mathrm{d}\rho(x)\,\mathrm{d}\mu(y) - \overline{\nabla}(K*\rho)(x,y)_{+}\eta(x,y)\,\mathrm{d}\rho(y)\,\mathrm{d}\mu(x)\,.$$

Curves of minimal slope characterization

Let $(\rho_t)_{t \in [0,T]} \in \mathrm{AC}^2(0,T;(\mathcal{P}_2(\Omega),\mathcal{T}))$ be such that $\int_0^T \mathcal{D}(\rho_t,w_t) \,\mathrm{d}t < \infty$, then $\mathbf{\mathcal{G}}_T(\rho) \ge 0$

■ $\mathcal{G}_T(\rho) = 0$ iff $(\rho_t)_{t \in [0,T]}$ is a weak solution to (NLIE).

Minimizers exist by direct method, however not necessarily global! ⇒ ToDo: redo the minimizing movement scheme in the quasimetric setting

Alternatively: Existence of solutions for (NLIE) via classical fix-point argument

Stability with respect to graph approximations

Let $\mu^n \in \mathcal{M}(\Omega)$ be such that $\mu^n \stackrel{*}{\rightharpoonup} \mu$ and define

$$\mathcal{G}_T^n(\rho^n) = \mathcal{E}(\rho_T^n) - \mathcal{E}(\rho_0) + \frac{1}{2} \iint_0^T \mathcal{A}^n(\rho_t^n, \boldsymbol{j}_t^n) \,\mathrm{d}t + \frac{1}{2} \iint_0^T \mathcal{D}(\rho_t^n, \boldsymbol{j}_t^n) \,\mathrm{d}t \,,$$

where \mathcal{A}^n and \mathcal{D}^n are defined with base measure μ^n .

Stability of gradient flows à la Sandier-Serfaty

Let $\rho^n \in AC^2(0,T; (\mathcal{P}(\Omega), \mathcal{T}_{\mu^n}))$ such that $\sup_n \mathcal{G}_T^n(\rho^n) < \infty$. Then, there exists $\rho \in AC^2(0,T; (\mathcal{P}(\Omega), \mathcal{T}_{\mu}))$ such that

$$\rho_t^n \stackrel{*}{\rightharpoonup} \rho_t \quad \text{in } \mathcal{P}_2(\Omega) \text{ for a.e. } t \in [0,T]$$

$$j^n \stackrel{*}{\rightharpoonup} j \quad \text{in } \mathcal{M}_{\text{loc}}(G \times [0,T])$$

$$\liminf_n \int_0^T \mathcal{A}^n(\rho_t^n, j_t^n) \, \mathrm{d}t \ge \int_0^T \mathcal{A}(\rho_t, j_t) \, \mathrm{d}t$$

$$\liminf_n \int_0^T \mathcal{D}^n(\rho_t^n, j_t^n) \, \mathrm{d}t \ge \int_0^T \mathcal{D}(\rho_t, j_t) \, \mathrm{d}t \, .$$

In particular weak solutions of (NLIE) with base measure μ^n converge to ones wrt. μ .

Stability with respect to graph approximations

Let $\mu^n \in \mathcal{M}(\Omega)$ be such that $\mu^n \stackrel{*}{\rightharpoonup} \mu$ and define

$$\mathcal{G}_T^n(\rho^n) = \mathcal{E}(\rho_T^n) - \mathcal{E}(\rho_0) + \frac{1}{2} \iint_0^T \mathcal{A}^n(\rho_t^n, \boldsymbol{j}_t^n) \,\mathrm{d}t + \frac{1}{2} \iint_0^T \mathcal{D}(\rho_t^n, \boldsymbol{j}_t^n) \,\mathrm{d}t \,,$$

where \mathcal{A}^n and \mathcal{D}^n are defined with base measure μ^n .

Stability of gradient flows à la Sandier-Serfaty

Let $\rho^n \in AC^2(0, T; (\mathcal{P}(\Omega), \mathcal{T}_{\mu^n}))$ such that $\sup_n \mathcal{G}_T^n(\rho^n) < \infty$. Then, there exists $\rho \in AC^2(0, T; (\mathcal{P}(\Omega), \mathcal{T}_{\mu}))$ such that

$$\rho_t^n \stackrel{*}{\rightharpoonup} \rho_t \quad \text{in } \mathcal{P}_2(\Omega) \text{ for a.e. } t \in [0,T]$$
$$\boldsymbol{j}^n \stackrel{*}{\rightharpoonup} \boldsymbol{j} \quad \text{in } \mathcal{M}_{\text{loc}}(G \times [0,T])$$
$$\liminf_n \int_0^T \mathcal{A}^n(\rho_t^n, \boldsymbol{j}_t^n) \, \mathrm{d}t \ge \int_0^T \mathcal{A}(\rho_t, \boldsymbol{j}_t) \, \mathrm{d}t$$
$$\liminf_n \int_0^T \mathcal{D}^n(\rho_t^n, \boldsymbol{j}_t^n) \, \mathrm{d}t \ge \int_0^T \mathcal{D}(\rho_t, \boldsymbol{j}_t) \, \mathrm{d}t \ .$$

In particular weak solutions of (NLIE) with base measure μ^n converge to ones wrt. μ .

Open questions / Future work

- convexity vs. contractivity vs. stability
 - ⇒ in Finslerian geometry become different concepts [Ohta-Sturm '12]
- EVI formulation leading to well-posedness
- minimizing movement schemes (JKO)
 ⇒ extend classical theory to quasimetric setting and beyond
- local limit $\delta \to 0$ to obtain interaction equation
- diagonal limits: $N \to \infty$ and $\delta \to 0$ to obtain even different PDEs

Free energies including entropies

$$\mathcal{E}(\rho) = \sigma \int \log \rho(x) \,\mathrm{d}\rho(x) + \frac{1}{2} \iint K(x,y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y)$$

For $\sigma > 0$ expect a Scharfetter-Gummel gradient structure

Applications/inspiration through other numerical (finite-volume) schemes

Open questions / Future work

- convexity vs. contractivity vs. stability
 - ⇒ in Finslerian geometry become different concepts [Ohta-Sturm '12]
- EVI formulation leading to well-posedness
- minimizing movement schemes (JKO)
 ⇒ extend classical theory to quasimetric setting and beyond
- local limit $\delta \to 0$ to obtain interaction equation
- diagonal limits: $N \to \infty$ and $\delta \to 0$ to obtain even different PDEs
- Free energies including entropies

$$\mathcal{E}(\rho) = \sigma \int \log \rho(x) \,\mathrm{d}\rho(x) + \frac{1}{2} \iint K(x,y) \,\mathrm{d}\rho(x) \,\mathrm{d}\rho(y)$$

For $\sigma > 0$ expect a Scharfetter-Gummel gradient structure

Applications/inspiration through other numerical (finite-volume) schemes

Thank you for your attention!

Literature

Recent advances in discrete/nonlocal gradient flows

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12] Markov chains and chemical reaction networks
- [Gigli, Maas '13] Gromov-Hausdorff convergence to Wasserstein

• [Erbar '14] Jump processes $-(-\Delta)^{\alpha/2}$ for $\alpha \in (0,2)$.

- [Disser, Liero '14] Passage from Markov chains to Fokker-Planck
- [Erbar, Fathi, Laschos, S. '16] Mean-field limit from weakly interacting Markov chains to nonlinear Markov chains

[Trillos '19] Gromov-Hausdorff convergence of random point clouds

All these works are built around of gradient flows for (relative) entropies:

$$\mathcal{F}^{\sigma}(\rho^{n}) = \frac{\sigma}{n} \sum_{i=1}^{n} \rho^{n}(x_{i}) \log \rho^{n}(x_{i}) + \frac{1}{2n^{2}} \sum_{i \neq j} K(x_{i}, x_{j}) \rho^{n}(x_{i}) \rho^{n}(x_{j})$$

Goal: Want to consider $\sigma = 0$! **Problem:** Impossible to pass to the limit $\sigma \rightarrow 0$ in the nonlocal metrics from above. \Rightarrow using nonsymmetric gradient structures seems to be unavoidable.

Literature

Recent advances in discrete/nonlocal gradient flows

- [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12] Markov chains and chemical reaction networks
- [Gigli, Maas '13] Gromov-Hausdorff convergence to Wasserstein
- [Erbar '14] Jump processes $-(-\Delta)^{\alpha/2}$ for $\alpha \in (0,2)$.
- [Disser, Liero '14] Passage from Markov chains to Fokker-Planck
- [Erbar, Fathi, Laschos, S. '16] Mean-field limit from weakly interacting Markov chains to nonlinear Markov chains
- [Trillos '19] Gromov-Hausdorff convergence of random point clouds

All these works are built around of gradient flows for (relative) entropies:

$$\mathcal{F}^{\sigma}(\rho^{n}) = \frac{\sigma}{n} \sum_{i=1}^{n} \rho^{n}(x_{i}) \log \rho^{n}(x_{i}) + \frac{1}{2n^{2}} \sum_{i \neq j} K(x_{i}, x_{j}) \rho^{n}(x_{i}) \rho^{n}(x_{j})$$

Goal: Want to consider $\sigma = 0!$

Problem: Impossible to pass to the limit $\sigma \rightarrow 0$ in the nonlocal metrics from above. \Rightarrow using nonsymmetric gradient structures seems to be unavoidable.

